MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tospos Structured version   Visualization version   GIF version

Theorem tospos 18430
Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
tospos (𝐹 ∈ Toset → 𝐹 ∈ Poset)

Proof of Theorem tospos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2735 . . 3 (le‘𝐹) = (le‘𝐹)
31, 2istos 18428 . 2 (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
43simplbi 497 1 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2108  wral 3051   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  Tosetctos 18426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-toset 18427
This theorem is referenced by:  tltnle  18432  resstos  32947  odutos  32948  tlt3  32950  xrsclat  33003  omndadd2d  33076  omndadd2rd  33077  omndmul2  33080  omndmul  33082  gsumle  33092  isarchi3  33185  archirngz  33187  archiabllem1a  33189  archiabllem2c  33193  orngsqr  33326  ofldchr  33336  ordtrest2NEWlem  33953  ordtrest2NEW  33954  ordtconnlem1  33955  toslat  48956
  Copyright terms: Public domain W3C validator