MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tospos Structured version   Visualization version   GIF version

Theorem tospos 18379
Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
tospos (𝐹 ∈ Toset → 𝐹 ∈ Poset)

Proof of Theorem tospos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2729 . . 3 (le‘𝐹) = (le‘𝐹)
31, 2istos 18377 . 2 (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
43simplbi 497 1 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  Posetcpo 18268  Tosetctos 18375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-toset 18376
This theorem is referenced by:  tltnle  18381  resstos  32893  odutos  32894  tlt3  32896  xrsclat  32949  omndadd2d  33022  omndadd2rd  33023  omndmul2  33026  omndmul  33028  gsumle  33038  isarchi3  33141  archirngz  33143  archiabllem1a  33145  archiabllem2c  33149  orngsqr  33282  ofldchr  33292  ordtrest2NEWlem  33912  ordtrest2NEW  33913  ordtconnlem1  33914  toslat  48970
  Copyright terms: Public domain W3C validator