| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version | ||
| Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2735 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 3 | 1, 2 | istos 18428 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 Posetcpo 18319 Tosetctos 18426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-toset 18427 |
| This theorem is referenced by: tltnle 18432 resstos 32947 odutos 32948 tlt3 32950 xrsclat 33003 omndadd2d 33076 omndadd2rd 33077 omndmul2 33080 omndmul 33082 gsumle 33092 isarchi3 33185 archirngz 33187 archiabllem1a 33189 archiabllem2c 33193 orngsqr 33326 ofldchr 33336 ordtrest2NEWlem 33953 ordtrest2NEW 33954 ordtconnlem1 33955 toslat 48956 |
| Copyright terms: Public domain | W3C validator |