![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version |
Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
2 | eqid 2728 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
3 | 1, 2 | istos 18417 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
4 | 3 | simplbi 496 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∈ wcel 2098 ∀wral 3058 class class class wbr 5152 ‘cfv 6553 Basecbs 17187 lecple 17247 Posetcpo 18306 Tosetctos 18415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-nul 5310 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-toset 18416 |
This theorem is referenced by: tltnle 18421 resstos 32715 odutos 32716 tlt3 32718 xrsclat 32759 omndadd2d 32809 omndadd2rd 32810 omndmul2 32813 omndmul 32815 gsumle 32825 isarchi3 32916 archirngz 32918 archiabllem1a 32920 archiabllem2c 32924 orngsqr 33043 ofldchr 33053 ordtrest2NEWlem 33556 ordtrest2NEW 33557 ordtconnlem1 33558 toslat 48071 |
Copyright terms: Public domain | W3C validator |