| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version | ||
| Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2733 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 3 | 1, 2 | istos 18324 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 Posetcpo 18215 Tosetctos 18322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-toset 18323 |
| This theorem is referenced by: tltnle 18328 resstos 18338 omndadd2d 20044 omndadd2rd 20045 omndmul2 20047 omndmul 20049 gsumle 20059 orngsqr 20783 ofldchr 21515 odutos 32956 tlt3 32958 xrsclat 32999 isarchi3 33163 archirngz 33165 archiabllem1a 33167 archiabllem2c 33171 ordtrest2NEWlem 33956 ordtrest2NEW 33957 ordtconnlem1 33958 toslat 49106 |
| Copyright terms: Public domain | W3C validator |