| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version | ||
| Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2729 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 3 | 1, 2 | istos 18377 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 Tosetctos 18375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-toset 18376 |
| This theorem is referenced by: tltnle 18381 resstos 32893 odutos 32894 tlt3 32896 xrsclat 32949 omndadd2d 33022 omndadd2rd 33023 omndmul2 33026 omndmul 33028 gsumle 33038 isarchi3 33141 archirngz 33143 archiabllem1a 33145 archiabllem2c 33149 orngsqr 33282 ofldchr 33292 ordtrest2NEWlem 33912 ordtrest2NEW 33913 ordtconnlem1 33914 toslat 48970 |
| Copyright terms: Public domain | W3C validator |