| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version | ||
| Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2731 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 3 | 1, 2 | istos 18319 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 lecple 17165 Posetcpo 18210 Tosetctos 18317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-toset 18318 |
| This theorem is referenced by: tltnle 18323 resstos 18333 omndadd2d 20040 omndadd2rd 20041 omndmul2 20043 omndmul 20045 gsumle 20055 orngsqr 20779 ofldchr 21511 odutos 32944 tlt3 32946 xrsclat 32987 isarchi3 33151 archirngz 33153 archiabllem1a 33155 archiabllem2c 33159 ordtrest2NEWlem 33930 ordtrest2NEW 33931 ordtconnlem1 33932 toslat 49012 |
| Copyright terms: Public domain | W3C validator |