![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version |
Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
2 | eqid 2735 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
3 | 1, 2 | istos 18476 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 Posetcpo 18365 Tosetctos 18474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-toset 18475 |
This theorem is referenced by: tltnle 18480 resstos 32942 odutos 32943 tlt3 32945 xrsclat 32996 omndadd2d 33068 omndadd2rd 33069 omndmul2 33072 omndmul 33074 gsumle 33084 isarchi3 33177 archirngz 33179 archiabllem1a 33181 archiabllem2c 33185 orngsqr 33314 ofldchr 33324 ordtrest2NEWlem 33883 ordtrest2NEW 33884 ordtconnlem1 33885 toslat 48771 |
Copyright terms: Public domain | W3C validator |