Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version |
Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
2 | eqid 2738 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
3 | 1, 2 | istos 18136 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 Posetcpo 18025 Tosetctos 18134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-toset 18135 |
This theorem is referenced by: tltnle 18140 resstos 31245 odutos 31246 tlt3 31248 xrsclat 31289 omndadd2d 31334 omndadd2rd 31335 omndmul2 31338 omndmul 31340 gsumle 31350 isarchi3 31441 archirngz 31443 archiabllem1a 31445 archiabllem2c 31449 orngsqr 31503 ofldchr 31513 ordtrest2NEWlem 31872 ordtrest2NEW 31873 ordtconnlem1 31874 toslat 46268 |
Copyright terms: Public domain | W3C validator |