![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version |
Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
Ref | Expression |
---|---|
tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
2 | eqid 2740 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
3 | 1, 2 | istos 18488 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 Tosetctos 18486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-toset 18487 |
This theorem is referenced by: tltnle 18492 resstos 32940 odutos 32941 tlt3 32943 xrsclat 32994 omndadd2d 33058 omndadd2rd 33059 omndmul2 33062 omndmul 33064 gsumle 33074 isarchi3 33167 archirngz 33169 archiabllem1a 33171 archiabllem2c 33175 orngsqr 33299 ofldchr 33309 ordtrest2NEWlem 33868 ordtrest2NEW 33869 ordtconnlem1 33870 toslat 48654 |
Copyright terms: Public domain | W3C validator |