| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tospos | Structured version Visualization version GIF version | ||
| Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| tospos | ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 2 | eqid 2729 | . . 3 ⊢ (le‘𝐹) = (le‘𝐹) | |
| 3 | 1, 2 | istos 18340 | . 2 ⊢ (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦 ∨ 𝑦(le‘𝐹)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2109 ∀wral 3044 class class class wbr 5095 ‘cfv 6486 Basecbs 17138 lecple 17186 Posetcpo 18231 Tosetctos 18338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-toset 18339 |
| This theorem is referenced by: tltnle 18344 resstos 18354 omndadd2d 20027 omndadd2rd 20028 omndmul2 20030 omndmul 20032 gsumle 20042 orngsqr 20769 ofldchr 21501 odutos 32923 tlt3 32925 xrsclat 32978 isarchi3 33139 archirngz 33141 archiabllem1a 33143 archiabllem2c 33147 ordtrest2NEWlem 33888 ordtrest2NEW 33889 ordtconnlem1 33890 toslat 48967 |
| Copyright terms: Public domain | W3C validator |