![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > odutos | Structured version Visualization version GIF version |
Description: Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
Ref | Expression |
---|---|
odutos.d | β’ π· = (ODualβπΎ) |
Ref | Expression |
---|---|
odutos | β’ (πΎ β Toset β π· β Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tospos 18383 | . . 3 β’ (πΎ β Toset β πΎ β Poset) | |
2 | odutos.d | . . . 4 β’ π· = (ODualβπΎ) | |
3 | 2 | odupos 18291 | . . 3 β’ (πΎ β Poset β π· β Poset) |
4 | 1, 3 | syl 17 | . 2 β’ (πΎ β Toset β π· β Poset) |
5 | eqid 2726 | . . . . . . 7 β’ (BaseβπΎ) = (BaseβπΎ) | |
6 | eqid 2726 | . . . . . . 7 β’ (leβπΎ) = (leβπΎ) | |
7 | 5, 6 | tleile 18384 | . . . . . 6 β’ ((πΎ β Toset β§ π¦ β (BaseβπΎ) β§ π₯ β (BaseβπΎ)) β (π¦(leβπΎ)π₯ β¨ π₯(leβπΎ)π¦)) |
8 | vex 3472 | . . . . . . . 8 β’ π₯ β V | |
9 | vex 3472 | . . . . . . . 8 β’ π¦ β V | |
10 | 8, 9 | brcnv 5875 | . . . . . . 7 β’ (π₯β‘(leβπΎ)π¦ β π¦(leβπΎ)π₯) |
11 | 9, 8 | brcnv 5875 | . . . . . . 7 β’ (π¦β‘(leβπΎ)π₯ β π₯(leβπΎ)π¦) |
12 | 10, 11 | orbi12i 911 | . . . . . 6 β’ ((π₯β‘(leβπΎ)π¦ β¨ π¦β‘(leβπΎ)π₯) β (π¦(leβπΎ)π₯ β¨ π₯(leβπΎ)π¦)) |
13 | 7, 12 | sylibr 233 | . . . . 5 β’ ((πΎ β Toset β§ π¦ β (BaseβπΎ) β§ π₯ β (BaseβπΎ)) β (π₯β‘(leβπΎ)π¦ β¨ π¦β‘(leβπΎ)π₯)) |
14 | 13 | 3com23 1123 | . . . 4 β’ ((πΎ β Toset β§ π₯ β (BaseβπΎ) β§ π¦ β (BaseβπΎ)) β (π₯β‘(leβπΎ)π¦ β¨ π¦β‘(leβπΎ)π₯)) |
15 | 14 | 3expb 1117 | . . 3 β’ ((πΎ β Toset β§ (π₯ β (BaseβπΎ) β§ π¦ β (BaseβπΎ))) β (π₯β‘(leβπΎ)π¦ β¨ π¦β‘(leβπΎ)π₯)) |
16 | 15 | ralrimivva 3194 | . 2 β’ (πΎ β Toset β βπ₯ β (BaseβπΎ)βπ¦ β (BaseβπΎ)(π₯β‘(leβπΎ)π¦ β¨ π¦β‘(leβπΎ)π₯)) |
17 | 2, 5 | odubas 18254 | . . 3 β’ (BaseβπΎ) = (Baseβπ·) |
18 | 2, 6 | oduleval 18252 | . . 3 β’ β‘(leβπΎ) = (leβπ·) |
19 | 17, 18 | istos 18381 | . 2 β’ (π· β Toset β (π· β Poset β§ βπ₯ β (BaseβπΎ)βπ¦ β (BaseβπΎ)(π₯β‘(leβπΎ)π¦ β¨ π¦β‘(leβπΎ)π₯))) |
20 | 4, 16, 19 | sylanbrc 582 | 1 β’ (πΎ β Toset β π· β Toset) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 844 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3055 class class class wbr 5141 β‘ccnv 5668 βcfv 6536 Basecbs 17151 lecple 17211 ODualcodu 18249 Posetcpo 18270 Tosetctos 18379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-dec 12679 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ple 17224 df-odu 18250 df-proset 18258 df-poset 18276 df-toset 18380 |
This theorem is referenced by: ordtrest2NEW 33433 |
Copyright terms: Public domain | W3C validator |