Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > odutos | Structured version Visualization version GIF version |
Description: Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
Ref | Expression |
---|---|
odutos.d | ⊢ 𝐷 = (ODual‘𝐾) |
Ref | Expression |
---|---|
odutos | ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tospos 18053 | . . 3 ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) | |
2 | odutos.d | . . . 4 ⊢ 𝐷 = (ODual‘𝐾) | |
3 | 2 | odupos 17961 | . . 3 ⊢ (𝐾 ∈ Poset → 𝐷 ∈ Poset) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Poset) |
5 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | eqid 2738 | . . . . . . 7 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 5, 6 | tleile 18054 | . . . . . 6 ⊢ ((𝐾 ∈ Toset ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑦(le‘𝐾)𝑥 ∨ 𝑥(le‘𝐾)𝑦)) |
8 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
9 | vex 3426 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | brcnv 5780 | . . . . . . 7 ⊢ (𝑥◡(le‘𝐾)𝑦 ↔ 𝑦(le‘𝐾)𝑥) |
11 | 9, 8 | brcnv 5780 | . . . . . . 7 ⊢ (𝑦◡(le‘𝐾)𝑥 ↔ 𝑥(le‘𝐾)𝑦) |
12 | 10, 11 | orbi12i 911 | . . . . . 6 ⊢ ((𝑥◡(le‘𝐾)𝑦 ∨ 𝑦◡(le‘𝐾)𝑥) ↔ (𝑦(le‘𝐾)𝑥 ∨ 𝑥(le‘𝐾)𝑦)) |
13 | 7, 12 | sylibr 233 | . . . . 5 ⊢ ((𝐾 ∈ Toset ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥◡(le‘𝐾)𝑦 ∨ 𝑦◡(le‘𝐾)𝑥)) |
14 | 13 | 3com23 1124 | . . . 4 ⊢ ((𝐾 ∈ Toset ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥◡(le‘𝐾)𝑦 ∨ 𝑦◡(le‘𝐾)𝑥)) |
15 | 14 | 3expb 1118 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥◡(le‘𝐾)𝑦 ∨ 𝑦◡(le‘𝐾)𝑥)) |
16 | 15 | ralrimivva 3114 | . 2 ⊢ (𝐾 ∈ Toset → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑦 ∨ 𝑦◡(le‘𝐾)𝑥)) |
17 | 2, 5 | odubas 17925 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐷) |
18 | 2, 6 | oduleval 17923 | . . 3 ⊢ ◡(le‘𝐾) = (le‘𝐷) |
19 | 17, 18 | istos 18051 | . 2 ⊢ (𝐷 ∈ Toset ↔ (𝐷 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥◡(le‘𝐾)𝑦 ∨ 𝑦◡(le‘𝐾)𝑥))) |
20 | 4, 16, 19 | sylanbrc 582 | 1 ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ◡ccnv 5579 ‘cfv 6418 Basecbs 16840 lecple 16895 ODualcodu 17920 Posetcpo 17940 Tosetctos 18049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-odu 17921 df-proset 17928 df-poset 17946 df-toset 18050 |
This theorem is referenced by: ordtrest2NEW 31775 |
Copyright terms: Public domain | W3C validator |