| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tltnle | Structured version Visualization version GIF version | ||
| Description: In a Toset, "less than" is equivalent to the negation of the converse of "less than or equal to", see pltnle 18297. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| tleile.b | ⊢ 𝐵 = (Base‘𝐾) |
| tleile.l | ⊢ ≤ = (le‘𝐾) |
| tltnle.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| tltnle | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tospos 18379 | . . 3 ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) | |
| 2 | tleile.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | tleile.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | tltnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 5 | 2, 3, 4 | pltval3 18298 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
| 6 | 1, 5 | syl3an1 1163 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
| 7 | 2, 3 | tleile 18380 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
| 8 | ibar 528 | . . . 4 ⊢ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) → (¬ 𝑌 ≤ 𝑋 ↔ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) ∧ ¬ 𝑌 ≤ 𝑋))) | |
| 9 | pm5.61 1002 | . . . 4 ⊢ (((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) ∧ ¬ 𝑌 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋)) | |
| 10 | 8, 9 | bitr2di 288 | . . 3 ⊢ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋) ↔ ¬ 𝑌 ≤ 𝑋)) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋) ↔ ¬ 𝑌 ≤ 𝑋)) |
| 12 | 6, 11 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 ltcplt 18269 Tosetctos 18375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-proset 18255 df-poset 18274 df-plt 18289 df-toset 18376 |
| This theorem is referenced by: tlt2 32895 toslublem 32898 tosglblem 32900 isarchi2 33139 archirng 33142 archiabllem2c 33149 archiabl 33152 |
| Copyright terms: Public domain | W3C validator |