MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tltnle Structured version   Visualization version   GIF version

Theorem tltnle 18326
Description: In a Toset, "less than" is equivalent to the negation of the converse of "less than or equal to", see pltnle 18242. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐵 = (Base‘𝐾)
tleile.l = (le‘𝐾)
tltnle.s < = (lt‘𝐾)
Assertion
Ref Expression
tltnle ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))

Proof of Theorem tltnle
StepHypRef Expression
1 tospos 18324 . . 3 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
2 tleile.b . . . 4 𝐵 = (Base‘𝐾)
3 tleile.l . . . 4 = (le‘𝐾)
4 tltnle.s . . . 4 < = (lt‘𝐾)
52, 3, 4pltval3 18243 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
61, 5syl3an1 1163 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
72, 3tleile 18325 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
8 ibar 528 . . . 4 ((𝑋 𝑌𝑌 𝑋) → (¬ 𝑌 𝑋 ↔ ((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋)))
9 pm5.61 1002 . . . 4 (((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋) ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋))
108, 9bitr2di 288 . . 3 ((𝑋 𝑌𝑌 𝑋) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
117, 10syl 17 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
126, 11bitrd 279 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  Basecbs 17120  lecple 17168  Posetcpo 18213  ltcplt 18214  Tosetctos 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-proset 18200  df-poset 18219  df-plt 18234  df-toset 18321
This theorem is referenced by:  tlt2  32912  toslublem  32915  tosglblem  32917  isarchi2  33128  archirng  33131  archiabllem2c  33138  archiabl  33141
  Copyright terms: Public domain W3C validator