Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tltnle Structured version   Visualization version   GIF version

Theorem tltnle 30675
Description: In a Toset, less-than is equivalent to not inverse "less than or equal to" see pltnle 17568. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐵 = (Base‘𝐾)
tleile.l = (le‘𝐾)
tltnle.s < = (lt‘𝐾)
Assertion
Ref Expression
tltnle ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))

Proof of Theorem tltnle
StepHypRef Expression
1 tospos 30671 . . 3 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
2 tleile.b . . . 4 𝐵 = (Base‘𝐾)
3 tleile.l . . . 4 = (le‘𝐾)
4 tltnle.s . . . 4 < = (lt‘𝐾)
52, 3, 4pltval3 17569 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
61, 5syl3an1 1160 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
72, 3tleile 30674 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
8 ibar 532 . . . 4 ((𝑋 𝑌𝑌 𝑋) → (¬ 𝑌 𝑋 ↔ ((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋)))
9 pm5.61 998 . . . 4 (((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋) ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋))
108, 9syl6rbb 291 . . 3 ((𝑋 𝑌𝑌 𝑋) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
117, 10syl 17 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
126, 11bitrd 282 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564  Posetcpo 17542  ltcplt 17543  Tosetctos 17635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-proset 17530  df-poset 17548  df-plt 17560  df-toset 17636
This theorem is referenced by:  tlt2  30677  toslublem  30680  tosglblem  30682  isarchi2  30864  archirng  30867  archiabllem2c  30874  archiabl  30877
  Copyright terms: Public domain W3C validator