Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tltnle Structured version   Visualization version   GIF version

Theorem tltnle 30207
Description: In a Toset, less-than is equivalent to not inverse "less than or equal to" see pltnle 17319. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐵 = (Base‘𝐾)
tleile.l = (le‘𝐾)
tltnle.s < = (lt‘𝐾)
Assertion
Ref Expression
tltnle ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))

Proof of Theorem tltnle
StepHypRef Expression
1 tospos 30203 . . 3 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
2 tleile.b . . . 4 𝐵 = (Base‘𝐾)
3 tleile.l . . . 4 = (le‘𝐾)
4 tltnle.s . . . 4 < = (lt‘𝐾)
52, 3, 4pltval3 17320 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
61, 5syl3an1 1208 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
72, 3tleile 30206 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
8 ibar 526 . . . 4 ((𝑋 𝑌𝑌 𝑋) → (¬ 𝑌 𝑋 ↔ ((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋)))
9 pm5.61 1030 . . . 4 (((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋) ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋))
108, 9syl6rbb 280 . . 3 ((𝑋 𝑌𝑌 𝑋) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
117, 10syl 17 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
126, 11bitrd 271 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 880  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4873  cfv 6123  Basecbs 16222  lecple 16312  Posetcpo 17293  ltcplt 17294  Tosetctos 17386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fv 6131  df-proset 17281  df-poset 17299  df-plt 17311  df-toset 17387
This theorem is referenced by:  tlt2  30209  toslublem  30212  tosglblem  30214  isarchi2  30284  archirng  30287  archiabllem2c  30294  archiabl  30297
  Copyright terms: Public domain W3C validator