Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tltnle Structured version   Visualization version   GIF version

Theorem tltnle 30651
Description: In a Toset, less-than is equivalent to not inverse "less than or equal to" see pltnle 17578. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐵 = (Base‘𝐾)
tleile.l = (le‘𝐾)
tltnle.s < = (lt‘𝐾)
Assertion
Ref Expression
tltnle ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))

Proof of Theorem tltnle
StepHypRef Expression
1 tospos 30647 . . 3 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
2 tleile.b . . . 4 𝐵 = (Base‘𝐾)
3 tleile.l . . . 4 = (le‘𝐾)
4 tltnle.s . . . 4 < = (lt‘𝐾)
52, 3, 4pltval3 17579 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
61, 5syl3an1 1159 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
72, 3tleile 30650 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
8 ibar 531 . . . 4 ((𝑋 𝑌𝑌 𝑋) → (¬ 𝑌 𝑋 ↔ ((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋)))
9 pm5.61 997 . . . 4 (((𝑋 𝑌𝑌 𝑋) ∧ ¬ 𝑌 𝑋) ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋))
108, 9syl6rbb 290 . . 3 ((𝑋 𝑌𝑌 𝑋) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
117, 10syl 17 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ ¬ 𝑌 𝑋) ↔ ¬ 𝑌 𝑋))
126, 11bitrd 281 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  Basecbs 16485  lecple 16574  Posetcpo 17552  ltcplt 17553  Tosetctos 17645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-proset 17540  df-poset 17558  df-plt 17570  df-toset 17646
This theorem is referenced by:  tlt2  30653  toslublem  30656  tosglblem  30658  isarchi2  30816  archirng  30819  archiabllem2c  30826  archiabl  30829
  Copyright terms: Public domain W3C validator