| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tltnle | Structured version Visualization version GIF version | ||
| Description: In a Toset, "less than" is equivalent to the negation of the converse of "less than or equal to", see pltnle 18304. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| tleile.b | ⊢ 𝐵 = (Base‘𝐾) |
| tleile.l | ⊢ ≤ = (le‘𝐾) |
| tltnle.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| tltnle | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tospos 18386 | . . 3 ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) | |
| 2 | tleile.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | tleile.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 4 | tltnle.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 5 | 2, 3, 4 | pltval3 18305 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
| 6 | 1, 5 | syl3an1 1163 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
| 7 | 2, 3 | tleile 18387 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
| 8 | ibar 528 | . . . 4 ⊢ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) → (¬ 𝑌 ≤ 𝑋 ↔ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) ∧ ¬ 𝑌 ≤ 𝑋))) | |
| 9 | pm5.61 1002 | . . . 4 ⊢ (((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) ∧ ¬ 𝑌 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋)) | |
| 10 | 8, 9 | bitr2di 288 | . . 3 ⊢ ((𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋) ↔ ¬ 𝑌 ≤ 𝑋)) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋) ↔ ¬ 𝑌 ≤ 𝑋)) |
| 12 | 6, 11 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 ltcplt 18276 Tosetctos 18382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-proset 18262 df-poset 18281 df-plt 18296 df-toset 18383 |
| This theorem is referenced by: tlt2 32902 toslublem 32905 tosglblem 32907 isarchi2 33146 archirng 33149 archiabllem2c 33156 archiabl 33159 |
| Copyright terms: Public domain | W3C validator |