Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trleile Structured version   Visualization version   GIF version

Theorem trleile 31880
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.)
Hypotheses
Ref Expression
trleile.b 𝐡 = (Baseβ€˜πΎ)
trleile.l ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
Assertion
Ref Expression
trleile ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ∨ π‘Œ ≀ 𝑋))

Proof of Theorem trleile
StepHypRef Expression
1 trleile.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 eqid 2733 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
31, 2tleile 18315 . . 3 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋(leβ€˜πΎ)π‘Œ ∨ π‘Œ(leβ€˜πΎ)𝑋))
4 3simpc 1151 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡))
5 brxp 5682 . . . . . 6 (𝑋(𝐡 Γ— 𝐡)π‘Œ ↔ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡))
64, 5sylibr 233 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝑋(𝐡 Γ— 𝐡)π‘Œ)
7 brin 5158 . . . . . 6 (𝑋((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))π‘Œ ↔ (𝑋(leβ€˜πΎ)π‘Œ ∧ 𝑋(𝐡 Γ— 𝐡)π‘Œ))
87rbaib 540 . . . . 5 (𝑋(𝐡 Γ— 𝐡)π‘Œ β†’ (𝑋((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))π‘Œ ↔ 𝑋(leβ€˜πΎ)π‘Œ))
96, 8syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))π‘Œ ↔ 𝑋(leβ€˜πΎ)π‘Œ))
104ancomd 463 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (π‘Œ ∈ 𝐡 ∧ 𝑋 ∈ 𝐡))
11 brxp 5682 . . . . . 6 (π‘Œ(𝐡 Γ— 𝐡)𝑋 ↔ (π‘Œ ∈ 𝐡 ∧ 𝑋 ∈ 𝐡))
1210, 11sylibr 233 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ(𝐡 Γ— 𝐡)𝑋)
13 brin 5158 . . . . . 6 (π‘Œ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))𝑋 ↔ (π‘Œ(leβ€˜πΎ)𝑋 ∧ π‘Œ(𝐡 Γ— 𝐡)𝑋))
1413rbaib 540 . . . . 5 (π‘Œ(𝐡 Γ— 𝐡)𝑋 β†’ (π‘Œ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))𝑋 ↔ π‘Œ(leβ€˜πΎ)𝑋))
1512, 14syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (π‘Œ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))𝑋 ↔ π‘Œ(leβ€˜πΎ)𝑋))
169, 15orbi12d 918 . . 3 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))π‘Œ ∨ π‘Œ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))𝑋) ↔ (𝑋(leβ€˜πΎ)π‘Œ ∨ π‘Œ(leβ€˜πΎ)𝑋)))
173, 16mpbird 257 . 2 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))π‘Œ ∨ π‘Œ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))𝑋))
18 trleile.l . . . 4 ≀ = ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))
1918breqi 5112 . . 3 (𝑋 ≀ π‘Œ ↔ 𝑋((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))π‘Œ)
2018breqi 5112 . . 3 (π‘Œ ≀ 𝑋 ↔ π‘Œ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))𝑋)
2119, 20orbi12i 914 . 2 ((𝑋 ≀ π‘Œ ∨ π‘Œ ≀ 𝑋) ↔ (𝑋((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))π‘Œ ∨ π‘Œ((leβ€˜πΎ) ∩ (𝐡 Γ— 𝐡))𝑋))
2217, 21sylibr 233 1 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ∨ π‘Œ ≀ 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   ∩ cin 3910   class class class wbr 5106   Γ— cxp 5632  β€˜cfv 6497  Basecbs 17088  lecple 17145  Tosetctos 18310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-xp 5640  df-iota 6449  df-fv 6505  df-toset 18311
This theorem is referenced by:  ordtrest2NEWlem  32560  ordtconnlem1  32562
  Copyright terms: Public domain W3C validator