Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trleile Structured version   Visualization version   GIF version

Theorem trleile 30327
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.)
Hypotheses
Ref Expression
trleile.b 𝐵 = (Base‘𝐾)
trleile.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
trleile ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))

Proof of Theorem trleile
StepHypRef Expression
1 trleile.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2795 . . . 4 (le‘𝐾) = (le‘𝐾)
31, 2tleile 30322 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋))
4 3simpc 1143 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
5 brxp 5489 . . . . . 6 (𝑋(𝐵 × 𝐵)𝑌 ↔ (𝑋𝐵𝑌𝐵))
64, 5sylibr 235 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑋(𝐵 × 𝐵)𝑌)
7 brin 5014 . . . . . 6 (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋(𝐵 × 𝐵)𝑌))
87rbaib 539 . . . . 5 (𝑋(𝐵 × 𝐵)𝑌 → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
96, 8syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
104ancomd 462 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
11 brxp 5489 . . . . . 6 (𝑌(𝐵 × 𝐵)𝑋 ↔ (𝑌𝐵𝑋𝐵))
1210, 11sylibr 235 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑌(𝐵 × 𝐵)𝑋)
13 brin 5014 . . . . . 6 (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋 ↔ (𝑌(le‘𝐾)𝑋𝑌(𝐵 × 𝐵)𝑋))
1413rbaib 539 . . . . 5 (𝑌(𝐵 × 𝐵)𝑋 → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1512, 14syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
169, 15orbi12d 913 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋) ↔ (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋)))
173, 16mpbird 258 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋))
18 trleile.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
1918breqi 4968 . . 3 (𝑋 𝑌𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌)
2018breqi 4968 . . 3 (𝑌 𝑋𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋)
2119, 20orbi12i 909 . 2 ((𝑋 𝑌𝑌 𝑋) ↔ (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋))
2217, 21sylibr 235 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  cin 3858   class class class wbr 4962   × cxp 5441  cfv 6225  Basecbs 16312  lecple 16401  Tosetctos 17472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-xp 5449  df-iota 6189  df-fv 6233  df-toset 17473
This theorem is referenced by:  ordtrest2NEWlem  30782  ordtconnlem1  30784
  Copyright terms: Public domain W3C validator