Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trleile Structured version   Visualization version   GIF version

Theorem trleile 32944
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.)
Hypotheses
Ref Expression
trleile.b 𝐵 = (Base‘𝐾)
trleile.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
trleile ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))

Proof of Theorem trleile
StepHypRef Expression
1 trleile.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2740 . . . 4 (le‘𝐾) = (le‘𝐾)
31, 2tleile 18491 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋))
4 3simpc 1150 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
5 brxp 5749 . . . . . 6 (𝑋(𝐵 × 𝐵)𝑌 ↔ (𝑋𝐵𝑌𝐵))
64, 5sylibr 234 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑋(𝐵 × 𝐵)𝑌)
7 brin 5218 . . . . . 6 (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋(𝐵 × 𝐵)𝑌))
87rbaib 538 . . . . 5 (𝑋(𝐵 × 𝐵)𝑌 → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
96, 8syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
104ancomd 461 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
11 brxp 5749 . . . . . 6 (𝑌(𝐵 × 𝐵)𝑋 ↔ (𝑌𝐵𝑋𝐵))
1210, 11sylibr 234 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑌(𝐵 × 𝐵)𝑋)
13 brin 5218 . . . . . 6 (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋 ↔ (𝑌(le‘𝐾)𝑋𝑌(𝐵 × 𝐵)𝑋))
1413rbaib 538 . . . . 5 (𝑌(𝐵 × 𝐵)𝑋 → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1512, 14syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
169, 15orbi12d 917 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋) ↔ (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋)))
173, 16mpbird 257 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋))
18 trleile.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
1918breqi 5172 . . 3 (𝑋 𝑌𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌)
2018breqi 5172 . . 3 (𝑌 𝑋𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋)
2119, 20orbi12i 913 . 2 ((𝑋 𝑌𝑌 𝑋) ↔ (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋))
2217, 21sylibr 234 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cin 3975   class class class wbr 5166   × cxp 5698  cfv 6573  Basecbs 17258  lecple 17318  Tosetctos 18486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-iota 6525  df-fv 6581  df-toset 18487
This theorem is referenced by:  ordtrest2NEWlem  33868  ordtconnlem1  33870
  Copyright terms: Public domain W3C validator