Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trleile Structured version   Visualization version   GIF version

Theorem trleile 32904
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.)
Hypotheses
Ref Expression
trleile.b 𝐵 = (Base‘𝐾)
trleile.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
trleile ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))

Proof of Theorem trleile
StepHypRef Expression
1 trleile.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2730 . . . 4 (le‘𝐾) = (le‘𝐾)
31, 2tleile 18387 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋))
4 3simpc 1150 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
5 brxp 5690 . . . . . 6 (𝑋(𝐵 × 𝐵)𝑌 ↔ (𝑋𝐵𝑌𝐵))
64, 5sylibr 234 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑋(𝐵 × 𝐵)𝑌)
7 brin 5162 . . . . . 6 (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋(𝐵 × 𝐵)𝑌))
87rbaib 538 . . . . 5 (𝑋(𝐵 × 𝐵)𝑌 → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
96, 8syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
104ancomd 461 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
11 brxp 5690 . . . . . 6 (𝑌(𝐵 × 𝐵)𝑋 ↔ (𝑌𝐵𝑋𝐵))
1210, 11sylibr 234 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑌(𝐵 × 𝐵)𝑋)
13 brin 5162 . . . . . 6 (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋 ↔ (𝑌(le‘𝐾)𝑋𝑌(𝐵 × 𝐵)𝑋))
1413rbaib 538 . . . . 5 (𝑌(𝐵 × 𝐵)𝑋 → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1512, 14syl 17 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
169, 15orbi12d 918 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋) ↔ (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋)))
173, 16mpbird 257 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋))
18 trleile.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
1918breqi 5116 . . 3 (𝑋 𝑌𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌)
2018breqi 5116 . . 3 (𝑌 𝑋𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋)
2119, 20orbi12i 914 . 2 ((𝑋 𝑌𝑌 𝑋) ↔ (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋))
2217, 21sylibr 234 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cin 3916   class class class wbr 5110   × cxp 5639  cfv 6514  Basecbs 17186  lecple 17234  Tosetctos 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-iota 6467  df-fv 6522  df-toset 18383
This theorem is referenced by:  ordtrest2NEWlem  33919  ordtconnlem1  33921
  Copyright terms: Public domain W3C validator