MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeq Structured version   Visualization version   GIF version

Theorem tposeq 8213
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposeq (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeq
StepHypRef Expression
1 eqimss 4041 . . 3 (𝐹 = 𝐺𝐹𝐺)
2 tposss 8212 . . 3 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
31, 2syl 17 . 2 (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
4 eqimss2 4042 . . 3 (𝐹 = 𝐺𝐺𝐹)
5 tposss 8212 . . 3 (𝐺𝐹 → tpos 𝐺 ⊆ tpos 𝐹)
64, 5syl 17 . 2 (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹)
73, 6eqssd 4000 1 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wss 3949  tpos ctpos 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-tpos 8211
This theorem is referenced by:  tposeqd  8214  tposeqi  8244
  Copyright terms: Public domain W3C validator