| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposeq | ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3989 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
| 2 | tposss 8163 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) |
| 4 | eqimss2 3990 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐺 ⊆ 𝐹) | |
| 5 | tposss 8163 | . . 3 ⊢ (𝐺 ⊆ 𝐹 → tpos 𝐺 ⊆ tpos 𝐹) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹) |
| 7 | 3, 6 | eqssd 3948 | 1 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 tpos ctpos 8161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-tpos 8162 |
| This theorem is referenced by: tposeqd 8165 tposeqi 8195 |
| Copyright terms: Public domain | W3C validator |