MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeq Structured version   Visualization version   GIF version

Theorem tposeq 8015
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposeq (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeq
StepHypRef Expression
1 eqimss 3973 . . 3 (𝐹 = 𝐺𝐹𝐺)
2 tposss 8014 . . 3 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
31, 2syl 17 . 2 (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
4 eqimss2 3974 . . 3 (𝐹 = 𝐺𝐺𝐹)
5 tposss 8014 . . 3 (𝐺𝐹 → tpos 𝐺 ⊆ tpos 𝐹)
64, 5syl 17 . 2 (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹)
73, 6eqssd 3934 1 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3883  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-tpos 8013
This theorem is referenced by:  tposeqd  8016  tposeqi  8046
  Copyright terms: Public domain W3C validator