![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposeq | Structured version Visualization version GIF version |
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposeq | ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3946 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
2 | tposss 7747 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) |
4 | eqimss2 3947 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐺 ⊆ 𝐹) | |
5 | tposss 7747 | . . 3 ⊢ (𝐺 ⊆ 𝐹 → tpos 𝐺 ⊆ tpos 𝐹) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹) |
7 | 3, 6 | eqssd 3908 | 1 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ⊆ wss 3861 tpos ctpos 7745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pr 5224 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-rab 3113 df-v 3438 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-br 4965 df-opab 5027 df-mpt 5044 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-res 5458 df-tpos 7746 |
This theorem is referenced by: tposeqd 7749 tposeqi 7779 |
Copyright terms: Public domain | W3C validator |