| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposeqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| tposeqd.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| tposeqd | ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposeqd.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | tposeq 8168 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 tpos ctpos 8165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-tpos 8166 |
| This theorem is referenced by: oppcval 17638 oppchomfval 17639 oppccofval 17641 oppchomfpropd 17651 oppcmon 17664 oppgval 19245 oppgplusfval 19246 oppglsm 19540 opprval 20242 opprmulfval 20243 mattposvs 22359 mattpos1 22360 mamutpos 22362 mattposm 22363 madulid 22549 oppfvalg 49131 funcoppc4 49149 uptposlem 49202 oppgoppcco 49596 |
| Copyright terms: Public domain | W3C validator |