MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeqd Structured version   Visualization version   GIF version

Theorem tposeqd 8045
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypothesis
Ref Expression
tposeqd.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
tposeqd (𝜑 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeqd
StepHypRef Expression
1 tposeqd.1 . 2 (𝜑𝐹 = 𝐺)
2 tposeq 8044 . 2 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
31, 2syl 17 1 (𝜑 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  tpos ctpos 8041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-tpos 8042
This theorem is referenced by:  oppcval  17422  oppchomfval  17423  oppchomfvalOLD  17424  oppccofval  17426  oppchomfpropd  17437  oppcmon  17450  oppgval  18951  oppgplusfval  18952  oppglsm  19247  opprval  19863  opprmulfval  19864  mattposvs  21604  mattpos1  21605  mamutpos  21607  mattposm  21608  madulid  21794
  Copyright terms: Public domain W3C validator