| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposeqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| tposeqd.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| tposeqd | ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposeqd.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | tposeq 8153 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 tpos ctpos 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-res 5623 df-tpos 8151 |
| This theorem is referenced by: oppcval 17614 oppchomfval 17615 oppccofval 17617 oppchomfpropd 17627 oppcmon 17640 oppgval 19254 oppgplusfval 19255 oppglsm 19549 opprval 20251 opprmulfval 20252 mattposvs 22365 mattpos1 22366 mamutpos 22368 mattposm 22369 madulid 22555 oppfvalg 49158 funcoppc4 49176 uptposlem 49229 oppgoppcco 49623 |
| Copyright terms: Public domain | W3C validator |