MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeqd Structured version   Visualization version   GIF version

Theorem tposeqd 8164
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypothesis
Ref Expression
tposeqd.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
tposeqd (𝜑 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeqd
StepHypRef Expression
1 tposeqd.1 . 2 (𝜑𝐹 = 𝐺)
2 tposeq 8163 . 2 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
31, 2syl 17 1 (𝜑 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  tpos ctpos 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-mpt 5193  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-res 5649  df-tpos 8161
This theorem is referenced by:  oppcval  17601  oppchomfval  17602  oppchomfvalOLD  17603  oppccofval  17605  oppchomfpropd  17616  oppcmon  17629  oppgval  19133  oppgplusfval  19134  oppglsm  19432  opprval  20058  opprmulfval  20059  mattposvs  21827  mattpos1  21828  mamutpos  21830  mattposm  21831  madulid  22017
  Copyright terms: Public domain W3C validator