MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeqd Structured version   Visualization version   GIF version

Theorem tposeqd 8213
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypothesis
Ref Expression
tposeqd.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
tposeqd (𝜑 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeqd
StepHypRef Expression
1 tposeqd.1 . 2 (𝜑𝐹 = 𝐺)
2 tposeq 8212 . 2 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
31, 2syl 17 1 (𝜑 → tpos 𝐹 = tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  tpos ctpos 8209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-tpos 8210
This theorem is referenced by:  oppcval  17656  oppchomfval  17657  oppchomfvalOLD  17658  oppccofval  17660  oppchomfpropd  17671  oppcmon  17684  oppgval  19210  oppgplusfval  19211  oppglsm  19509  opprval  20150  opprmulfval  20151  mattposvs  21956  mattpos1  21957  mamutpos  21959  mattposm  21960  madulid  22146
  Copyright terms: Public domain W3C validator