| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposeqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| tposeqd.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| tposeqd | ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposeqd.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | tposeq 8167 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 tpos ctpos 8164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-tpos 8165 |
| This theorem is referenced by: oppcval 17627 oppchomfval 17628 oppccofval 17630 oppchomfpropd 17640 oppcmon 17653 oppgval 19267 oppgplusfval 19268 oppglsm 19562 opprval 20265 opprmulfval 20266 mattposvs 22390 mattpos1 22391 mamutpos 22393 mattposm 22394 madulid 22580 oppfvalg 49287 funcoppc4 49305 uptposlem 49358 oppgoppcco 49752 |
| Copyright terms: Public domain | W3C validator |