| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposeqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| tposeqd.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| tposeqd | ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposeqd.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | tposeq 8184 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 tpos ctpos 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-tpos 8182 |
| This theorem is referenced by: oppcval 17650 oppchomfval 17651 oppccofval 17653 oppchomfpropd 17663 oppcmon 17676 oppgval 19255 oppgplusfval 19256 oppglsm 19548 opprval 20223 opprmulfval 20224 mattposvs 22318 mattpos1 22319 mamutpos 22321 mattposm 22322 madulid 22508 oppfvalg 49088 funcoppc4 49106 uptposlem 49159 oppgoppcco 49553 |
| Copyright terms: Public domain | W3C validator |