MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeqi Structured version   Visualization version   GIF version

Theorem tposeqi 8300
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposeqi.1 𝐹 = 𝐺
Assertion
Ref Expression
tposeqi tpos 𝐹 = tpos 𝐺

Proof of Theorem tposeqi
StepHypRef Expression
1 tposeqi.1 . 2 𝐹 = 𝐺
2 tposeq 8269 . 2 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
31, 2ax-mp 5 1 tpos 𝐹 = tpos 𝐺
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  tpos ctpos 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-tpos 8267
This theorem is referenced by:  tposoprab  8303  mattpos1  22483  opprabs  33475
  Copyright terms: Public domain W3C validator