MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposeqi Structured version   Visualization version   GIF version

Theorem tposeqi 8244
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposeqi.1 𝐹 = 𝐺
Assertion
Ref Expression
tposeqi tpos 𝐹 = tpos 𝐺

Proof of Theorem tposeqi
StepHypRef Expression
1 tposeqi.1 . 2 𝐹 = 𝐺
2 tposeq 8213 . 2 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
31, 2ax-mp 5 1 tpos 𝐹 = tpos 𝐺
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  tpos ctpos 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-tpos 8211
This theorem is referenced by:  tposoprab  8247  mattpos1  21958  opprabs  32596
  Copyright terms: Public domain W3C validator