| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trelpss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5597, ax-reg 9478 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| Ref | Expression |
|---|---|
| trelpss | ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfregfr 9494 | . . 3 ⊢ E Fr 𝐴 | |
| 2 | tz7.2 5597 | . . 3 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
| 3 | 1, 2 | mp3an2 1451 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
| 4 | df-pss 3917 | . 2 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ⊊ wpss 3898 Tr wtr 5196 E cep 5513 Fr wfr 5564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-fr 5567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |