Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trelpss | Structured version Visualization version GIF version |
Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5564, ax-reg 9281 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
Ref | Expression |
---|---|
trelpss | ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfregfr 9293 | . . 3 ⊢ E Fr 𝐴 | |
2 | tz7.2 5564 | . . 3 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
3 | 1, 2 | mp3an2 1447 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
4 | df-pss 3902 | . 2 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ⊊ wpss 3884 Tr wtr 5187 E cep 5485 Fr wfr 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-fr 5535 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |