| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trelpss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5614, ax-reg 9521 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| Ref | Expression |
|---|---|
| trelpss | ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfregfr 9534 | . . 3 ⊢ E Fr 𝐴 | |
| 2 | tz7.2 5614 | . . 3 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
| 3 | 1, 2 | mp3an2 1451 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
| 4 | df-pss 3931 | . 2 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ⊊ wpss 3912 Tr wtr 5209 E cep 5530 Fr wfr 5581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-reg 9521 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-fr 5584 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |