Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trelpss Structured version   Visualization version   GIF version

Theorem trelpss 44557
Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5597, ax-reg 9478 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
trelpss ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trelpss
StepHypRef Expression
1 zfregfr 9494 . . 3 E Fr 𝐴
2 tz7.2 5597 . . 3 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
31, 2mp3an2 1451 . 2 ((Tr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
4 df-pss 3917 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴))
53, 4sylibr 234 1 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wne 2928  wss 3897  wpss 3898  Tr wtr 5196   E cep 5513   Fr wfr 5564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-fr 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator