Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trelpss Structured version   Visualization version   GIF version

Theorem trelpss 44444
Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5621, ax-reg 9545 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
trelpss ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trelpss
StepHypRef Expression
1 zfregfr 9558 . . 3 E Fr 𝐴
2 tz7.2 5621 . . 3 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
31, 2mp3an2 1451 . 2 ((Tr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
4 df-pss 3934 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴))
53, 4sylibr 234 1 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  wss 3914  wpss 3915  Tr wtr 5214   E cep 5537   Fr wfr 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-fr 5591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator