![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trelpss | Structured version Visualization version GIF version |
Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5673, ax-reg 9636 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.) |
Ref | Expression |
---|---|
trelpss | ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfregfr 9649 | . . 3 ⊢ E Fr 𝐴 | |
2 | tz7.2 5673 | . . 3 ⊢ ((Tr 𝐴 ∧ E Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
3 | 1, 2 | mp3an2 1449 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) |
4 | df-pss 3984 | . 2 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ 𝐴)) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2939 ⊆ wss 3964 ⊊ wpss 3965 Tr wtr 5266 E cep 5589 Fr wfr 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-reg 9636 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5590 df-fr 5642 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |