Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trelpss Structured version   Visualization version   GIF version

Theorem trelpss 44419
Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5650, ax-reg 9615 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
trelpss ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trelpss
StepHypRef Expression
1 zfregfr 9628 . . 3 E Fr 𝐴
2 tz7.2 5650 . . 3 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
31, 2mp3an2 1450 . 2 ((Tr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
4 df-pss 3953 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴))
53, 4sylibr 234 1 ((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wne 2931  wss 3933  wpss 3934  Tr wtr 5241   E cep 5565   Fr wfr 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-reg 9615
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-fr 5619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator