MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0tsk Structured version   Visualization version   GIF version

Theorem 0tsk 10769
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
0tsk ∅ ∈ Tarski

Proof of Theorem 0tsk
StepHypRef Expression
1 ral0 4488 . 2 𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅)
2 elsni 4618 . . . . 5 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0ex 5277 . . . . . . . 8 ∅ ∈ V
43enref 8999 . . . . . . 7 ∅ ≈ ∅
5 breq1 5122 . . . . . . 7 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
64, 5mpbiri 258 . . . . . 6 (𝑥 = ∅ → 𝑥 ≈ ∅)
76orcd 873 . . . . 5 (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
82, 7syl 17 . . . 4 (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
9 pw0 4788 . . . 4 𝒫 ∅ = {∅}
108, 9eleq2s 2852 . . 3 (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
1110rgen 3053 . 2 𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)
12 eltsk2g 10765 . . 3 (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))))
133, 12ax-mp 5 . 2 (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))
141, 11, 13mpbir2an 711 1 ∅ ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  cen 8956  Tarskictsk 10762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-en 8960  df-tsk 10763
This theorem is referenced by:  r1tskina  10796  grutsk  10836  tskmcl  10855
  Copyright terms: Public domain W3C validator