| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0tsk | Structured version Visualization version GIF version | ||
| Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
| Ref | Expression |
|---|---|
| 0tsk | ⊢ ∅ ∈ Tarski |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4460 | . 2 ⊢ ∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) | |
| 2 | elsni 4590 | . . . . 5 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 3 | 0ex 5243 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 4 | 3 | enref 8907 | . . . . . . 7 ⊢ ∅ ≈ ∅ |
| 5 | breq1 5092 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ≈ ∅) |
| 7 | 6 | orcd 873 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
| 9 | pw0 4761 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
| 10 | 8, 9 | eleq2s 2849 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
| 11 | 10 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅) |
| 12 | eltsk2g 10642 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))) | |
| 13 | 3, 12 | ax-mp 5 | . 2 ⊢ (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))) |
| 14 | 1, 11, 13 | mpbir2an 711 | 1 ⊢ ∅ ∈ Tarski |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 {csn 4573 class class class wbr 5089 ≈ cen 8866 Tarskictsk 10639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 df-tsk 10640 |
| This theorem is referenced by: r1tskina 10673 grutsk 10713 tskmcl 10732 |
| Copyright terms: Public domain | W3C validator |