Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0tsk | Structured version Visualization version GIF version |
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
0tsk | ⊢ ∅ ∈ Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4443 | . 2 ⊢ ∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) | |
2 | elsni 4578 | . . . . 5 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0ex 5231 | . . . . . . . 8 ⊢ ∅ ∈ V | |
4 | 3 | enref 8773 | . . . . . . 7 ⊢ ∅ ≈ ∅ |
5 | breq1 5077 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅)) | |
6 | 4, 5 | mpbiri 257 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ≈ ∅) |
7 | 6 | orcd 870 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
9 | pw0 4745 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
10 | 8, 9 | eleq2s 2857 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
11 | 10 | rgen 3074 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅) |
12 | eltsk2g 10507 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))) | |
13 | 3, 12 | ax-mp 5 | . 2 ⊢ (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))) |
14 | 1, 11, 13 | mpbir2an 708 | 1 ⊢ ∅ ∈ Tarski |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 ≈ cen 8730 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 df-tsk 10505 |
This theorem is referenced by: r1tskina 10538 grutsk 10578 tskmcl 10597 |
Copyright terms: Public domain | W3C validator |