![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0tsk | Structured version Visualization version GIF version |
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
0tsk | ⊢ ∅ ∈ Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4519 | . 2 ⊢ ∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) | |
2 | elsni 4648 | . . . . 5 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0ex 5313 | . . . . . . . 8 ⊢ ∅ ∈ V | |
4 | 3 | enref 9024 | . . . . . . 7 ⊢ ∅ ≈ ∅ |
5 | breq1 5151 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅)) | |
6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ≈ ∅) |
7 | 6 | orcd 873 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
9 | pw0 4817 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
10 | 8, 9 | eleq2s 2857 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
11 | 10 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅) |
12 | eltsk2g 10789 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))) | |
13 | 3, 12 | ax-mp 5 | . 2 ⊢ (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))) |
14 | 1, 11, 13 | mpbir2an 711 | 1 ⊢ ∅ ∈ Tarski |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 class class class wbr 5148 ≈ cen 8981 Tarskictsk 10786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-en 8985 df-tsk 10787 |
This theorem is referenced by: r1tskina 10820 grutsk 10860 tskmcl 10879 |
Copyright terms: Public domain | W3C validator |