MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0tsk Structured version   Visualization version   GIF version

Theorem 0tsk 10752
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
0tsk ∅ ∈ Tarski

Proof of Theorem 0tsk
StepHypRef Expression
1 ral0 4512 . 2 𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅)
2 elsni 4645 . . . . 5 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0ex 5307 . . . . . . . 8 ∅ ∈ V
43enref 8983 . . . . . . 7 ∅ ≈ ∅
5 breq1 5151 . . . . . . 7 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
64, 5mpbiri 257 . . . . . 6 (𝑥 = ∅ → 𝑥 ≈ ∅)
76orcd 871 . . . . 5 (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
82, 7syl 17 . . . 4 (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
9 pw0 4815 . . . 4 𝒫 ∅ = {∅}
108, 9eleq2s 2851 . . 3 (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
1110rgen 3063 . 2 𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)
12 eltsk2g 10748 . . 3 (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))))
133, 12ax-mp 5 . 2 (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))
141, 11, 13mpbir2an 709 1 ∅ ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   class class class wbr 5148  cen 8938  Tarskictsk 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-en 8942  df-tsk 10746
This theorem is referenced by:  r1tskina  10779  grutsk  10819  tskmcl  10838
  Copyright terms: Public domain W3C validator