![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0tsk | Structured version Visualization version GIF version |
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
0tsk | ⊢ ∅ ∈ Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4512 | . 2 ⊢ ∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) | |
2 | elsni 4645 | . . . . 5 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
3 | 0ex 5307 | . . . . . . . 8 ⊢ ∅ ∈ V | |
4 | 3 | enref 8983 | . . . . . . 7 ⊢ ∅ ≈ ∅ |
5 | breq1 5151 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅)) | |
6 | 4, 5 | mpbiri 257 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ≈ ∅) |
7 | 6 | orcd 871 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
9 | pw0 4815 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
10 | 8, 9 | eleq2s 2851 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
11 | 10 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅) |
12 | eltsk2g 10748 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))) | |
13 | 3, 12 | ax-mp 5 | . 2 ⊢ (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))) |
14 | 1, 11, 13 | mpbir2an 709 | 1 ⊢ ∅ ∈ Tarski |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 ≈ cen 8938 Tarskictsk 10745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-en 8942 df-tsk 10746 |
This theorem is referenced by: r1tskina 10779 grutsk 10819 tskmcl 10838 |
Copyright terms: Public domain | W3C validator |