MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0tsk Structured version   Visualization version   GIF version

Theorem 0tsk 10511
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
0tsk ∅ ∈ Tarski

Proof of Theorem 0tsk
StepHypRef Expression
1 ral0 4443 . 2 𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅)
2 elsni 4578 . . . . 5 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0ex 5231 . . . . . . . 8 ∅ ∈ V
43enref 8773 . . . . . . 7 ∅ ≈ ∅
5 breq1 5077 . . . . . . 7 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
64, 5mpbiri 257 . . . . . 6 (𝑥 = ∅ → 𝑥 ≈ ∅)
76orcd 870 . . . . 5 (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
82, 7syl 17 . . . 4 (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
9 pw0 4745 . . . 4 𝒫 ∅ = {∅}
108, 9eleq2s 2857 . . 3 (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
1110rgen 3074 . 2 𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)
12 eltsk2g 10507 . . 3 (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))))
133, 12ax-mp 5 . 2 (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))
141, 11, 13mpbir2an 708 1 ∅ ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cen 8730  Tarskictsk 10504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-en 8734  df-tsk 10505
This theorem is referenced by:  r1tskina  10538  grutsk  10578  tskmcl  10597
  Copyright terms: Public domain W3C validator