MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0tsk Structured version   Visualization version   GIF version

Theorem 0tsk 10180
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
0tsk ∅ ∈ Tarski

Proof of Theorem 0tsk
StepHypRef Expression
1 ral0 4459 . 2 𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅)
2 elsni 4587 . . . . 5 (𝑥 ∈ {∅} → 𝑥 = ∅)
3 0ex 5214 . . . . . . . 8 ∅ ∈ V
43enref 8545 . . . . . . 7 ∅ ≈ ∅
5 breq1 5072 . . . . . . 7 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
64, 5mpbiri 260 . . . . . 6 (𝑥 = ∅ → 𝑥 ≈ ∅)
76orcd 869 . . . . 5 (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
82, 7syl 17 . . . 4 (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
9 pw0 4748 . . . 4 𝒫 ∅ = {∅}
108, 9eleq2s 2934 . . 3 (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))
1110rgen 3151 . 2 𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)
12 eltsk2g 10176 . . 3 (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))))
133, 12ax-mp 5 . 2 (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))
141, 11, 13mpbir2an 709 1 ∅ ∈ Tarski
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  wss 3939  c0 4294  𝒫 cpw 4542  {csn 4570   class class class wbr 5069  cen 8509  Tarskictsk 10173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-en 8513  df-tsk 10174
This theorem is referenced by:  r1tskina  10207  grutsk  10247  tskmcl  10266
  Copyright terms: Public domain W3C validator