| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0tsk | Structured version Visualization version GIF version | ||
| Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
| Ref | Expression |
|---|---|
| 0tsk | ⊢ ∅ ∈ Tarski |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4464 | . 2 ⊢ ∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) | |
| 2 | elsni 4594 | . . . . 5 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 3 | 0ex 5246 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 4 | 3 | enref 8910 | . . . . . . 7 ⊢ ∅ ≈ ∅ |
| 5 | breq1 5095 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ≈ ∅) |
| 7 | 6 | orcd 873 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑥 ∈ {∅} → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
| 9 | pw0 4763 | . . . 4 ⊢ 𝒫 ∅ = {∅} | |
| 10 | 8, 9 | eleq2s 2846 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∅ → (𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)) |
| 11 | 10 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅) |
| 12 | eltsk2g 10645 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅)))) | |
| 13 | 3, 12 | ax-mp 5 | . 2 ⊢ (∅ ∈ Tarski ↔ (∀𝑥 ∈ ∅ (𝒫 𝑥 ⊆ ∅ ∧ 𝒫 𝑥 ∈ ∅) ∧ ∀𝑥 ∈ 𝒫 ∅(𝑥 ≈ ∅ ∨ 𝑥 ∈ ∅))) |
| 14 | 1, 11, 13 | mpbir2an 711 | 1 ⊢ ∅ ∈ Tarski |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 ≈ cen 8869 Tarskictsk 10642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-en 8873 df-tsk 10643 |
| This theorem is referenced by: r1tskina 10676 grutsk 10716 tskmcl 10735 |
| Copyright terms: Public domain | W3C validator |