Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢ dom 𝑅 = dom 𝑅 |
2 | 1 | ordthauslem 22135 |
. . . . 5
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦 → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
3 | 1 | ordthauslem 22135 |
. . . . . . 7
⊢ ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅 ∧ 𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑦 ≠ 𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
4 | | necom 2987 |
. . . . . . . 8
⊢ (𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦) |
5 | | 3ancoma 1099 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑛 ∩ 𝑚) = ∅)) |
6 | | incom 4092 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∩ 𝑚) = (𝑚 ∩ 𝑛) |
7 | 6 | eqeq1i 2743 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∩ 𝑚) = ∅ ↔ (𝑚 ∩ 𝑛) = ∅) |
8 | 7 | 3anbi3i 1160 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
9 | 5, 8 | bitri 278 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
10 | 9 | 2rexbii 3162 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
(ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
11 | | rexcom 3259 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
(ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
12 | 10, 11 | bitri 278 |
. . . . . . . 8
⊢
(∃𝑛 ∈
(ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
13 | 4, 12 | imbi12i 354 |
. . . . . . 7
⊢ ((𝑦 ≠ 𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦 ∈ 𝑛 ∧ 𝑥 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) ↔ (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
14 | 3, 13 | syl6ib 254 |
. . . . . 6
⊢ ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅 ∧ 𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
15 | 14 | 3com23 1127 |
. . . . 5
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
16 | 1 | tsrlin 17946 |
. . . . 5
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) |
17 | 2, 15, 16 | mpjaod 859 |
. . . 4
⊢ ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
18 | 17 | 3expb 1121 |
. . 3
⊢ ((𝑅 ∈ TosetRel ∧ (𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅)) → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
19 | 18 | ralrimivva 3103 |
. 2
⊢ (𝑅 ∈ TosetRel →
∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
20 | 1 | ordttopon 21945 |
. . 3
⊢ (𝑅 ∈ TosetRel →
(ordTop‘𝑅) ∈
(TopOn‘dom 𝑅)) |
21 | | ishaus2 22103 |
. . 3
⊢
((ordTop‘𝑅)
∈ (TopOn‘dom 𝑅)
→ ((ordTop‘𝑅)
∈ Haus ↔ ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
22 | 20, 21 | syl 17 |
. 2
⊢ (𝑅 ∈ TosetRel →
((ordTop‘𝑅) ∈
Haus ↔ ∀𝑥
∈ dom 𝑅∀𝑦 ∈ dom 𝑅(𝑥 ≠ 𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
23 | 19, 22 | mpbird 260 |
1
⊢ (𝑅 ∈ TosetRel →
(ordTop‘𝑅) ∈
Haus) |