MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthaus Structured version   Visualization version   GIF version

Theorem ordthaus 23271
Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
ordthaus (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)

Proof of Theorem ordthaus
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 dom 𝑅 = dom 𝑅
21ordthauslem 23270 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
31ordthauslem 23270 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅))))
4 necom 2978 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
5 3ancoma 1097 . . . . . . . . . . 11 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅))
6 incom 4172 . . . . . . . . . . . . 13 (𝑛𝑚) = (𝑚𝑛)
76eqeq1i 2734 . . . . . . . . . . . 12 ((𝑛𝑚) = ∅ ↔ (𝑚𝑛) = ∅)
873anbi3i 1159 . . . . . . . . . . 11 ((𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
95, 8bitri 275 . . . . . . . . . 10 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1092rexbii 3109 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
11 rexcom 3266 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1210, 11bitri 275 . . . . . . . 8 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
134, 12imbi12i 350 . . . . . . 7 ((𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
143, 13imbitrdi 251 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
15143com23 1126 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
161tsrlin 18544 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦𝑦𝑅𝑥))
172, 15, 16mpjaod 860 . . . 4 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
18173expb 1120 . . 3 ((𝑅 ∈ TosetRel ∧ (𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅)) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
1918ralrimivva 3180 . 2 (𝑅 ∈ TosetRel → ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
201ordttopon 23080 . . 3 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
21 ishaus2 23238 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2220, 21syl 17 . 2 (𝑅 ∈ TosetRel → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2319, 22mpbird 257 1 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  c0 4296   class class class wbr 5107  dom cdm 5638  cfv 6511  ordTopcordt 17462   TosetRel ctsr 18524  TopOnctopon 22797  Hauscha 23195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-fin 8922  df-fi 9362  df-topgen 17406  df-ordt 17464  df-ps 18525  df-tsr 18526  df-top 22781  df-topon 22798  df-bases 22833  df-haus 23202
This theorem is referenced by:  xrhaus  23272  xrge0tsms  24723  xrge0tsmsd  33002
  Copyright terms: Public domain W3C validator