MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthaus Structured version   Visualization version   GIF version

Theorem ordthaus 23413
Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
ordthaus (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)

Proof of Theorem ordthaus
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 dom 𝑅 = dom 𝑅
21ordthauslem 23412 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
31ordthauslem 23412 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅))))
4 necom 3000 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
5 3ancoma 1098 . . . . . . . . . . 11 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅))
6 incom 4230 . . . . . . . . . . . . 13 (𝑛𝑚) = (𝑚𝑛)
76eqeq1i 2745 . . . . . . . . . . . 12 ((𝑛𝑚) = ∅ ↔ (𝑚𝑛) = ∅)
873anbi3i 1159 . . . . . . . . . . 11 ((𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
95, 8bitri 275 . . . . . . . . . 10 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1092rexbii 3135 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
11 rexcom 3296 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1210, 11bitri 275 . . . . . . . 8 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
134, 12imbi12i 350 . . . . . . 7 ((𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
143, 13imbitrdi 251 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
15143com23 1126 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
161tsrlin 18655 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦𝑦𝑅𝑥))
172, 15, 16mpjaod 859 . . . 4 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
18173expb 1120 . . 3 ((𝑅 ∈ TosetRel ∧ (𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅)) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
1918ralrimivva 3208 . 2 (𝑅 ∈ TosetRel → ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
201ordttopon 23222 . . 3 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
21 ishaus2 23380 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2220, 21syl 17 . 2 (𝑅 ∈ TosetRel → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2319, 22mpbird 257 1 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  c0 4352   class class class wbr 5166  dom cdm 5700  cfv 6573  ordTopcordt 17559   TosetRel ctsr 18635  TopOnctopon 22937  Hauscha 23337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-topgen 17503  df-ordt 17561  df-ps 18636  df-tsr 18637  df-top 22921  df-topon 22938  df-bases 22974  df-haus 23344
This theorem is referenced by:  xrhaus  23414  xrge0tsms  24875  xrge0tsmsd  33041
  Copyright terms: Public domain W3C validator