MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthaus Structured version   Visualization version   GIF version

Theorem ordthaus 23299
Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
ordthaus (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)

Proof of Theorem ordthaus
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 dom 𝑅 = dom 𝑅
21ordthauslem 23298 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
31ordthauslem 23298 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅))))
4 necom 2981 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
5 3ancoma 1097 . . . . . . . . . . 11 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅))
6 incom 4156 . . . . . . . . . . . . 13 (𝑛𝑚) = (𝑚𝑛)
76eqeq1i 2736 . . . . . . . . . . . 12 ((𝑛𝑚) = ∅ ↔ (𝑚𝑛) = ∅)
873anbi3i 1159 . . . . . . . . . . 11 ((𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
95, 8bitri 275 . . . . . . . . . 10 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1092rexbii 3108 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
11 rexcom 3261 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1210, 11bitri 275 . . . . . . . 8 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
134, 12imbi12i 350 . . . . . . 7 ((𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
143, 13imbitrdi 251 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
15143com23 1126 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
161tsrlin 18491 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦𝑦𝑅𝑥))
172, 15, 16mpjaod 860 . . . 4 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
18173expb 1120 . . 3 ((𝑅 ∈ TosetRel ∧ (𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅)) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
1918ralrimivva 3175 . 2 (𝑅 ∈ TosetRel → ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
201ordttopon 23108 . . 3 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
21 ishaus2 23266 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2220, 21syl 17 . 2 (𝑅 ∈ TosetRel → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2319, 22mpbird 257 1 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3896  c0 4280   class class class wbr 5089  dom cdm 5614  cfv 6481  ordTopcordt 17403   TosetRel ctsr 18471  TopOnctopon 22825  Hauscha 23223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870  df-fin 8873  df-fi 9295  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22809  df-topon 22826  df-bases 22861  df-haus 23230
This theorem is referenced by:  xrhaus  23300  xrge0tsms  24750  xrge0tsmsd  33042
  Copyright terms: Public domain W3C validator