MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthaus Structured version   Visualization version   GIF version

Theorem ordthaus 22443
Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
ordthaus (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)

Proof of Theorem ordthaus
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 dom 𝑅 = dom 𝑅
21ordthauslem 22442 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
31ordthauslem 22442 . . . . . . 7 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅))))
4 necom 2996 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
5 3ancoma 1096 . . . . . . . . . . 11 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅))
6 incom 4131 . . . . . . . . . . . . 13 (𝑛𝑚) = (𝑚𝑛)
76eqeq1i 2743 . . . . . . . . . . . 12 ((𝑛𝑚) = ∅ ↔ (𝑚𝑛) = ∅)
873anbi3i 1157 . . . . . . . . . . 11 ((𝑥𝑚𝑦𝑛 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
95, 8bitri 274 . . . . . . . . . 10 ((𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1092rexbii 3178 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
11 rexcom 3281 . . . . . . . . 9 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
1210, 11bitri 274 . . . . . . . 8 (∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
134, 12imbi12i 350 . . . . . . 7 ((𝑦𝑥 → ∃𝑛 ∈ (ordTop‘𝑅)∃𝑚 ∈ (ordTop‘𝑅)(𝑦𝑛𝑥𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
143, 13syl6ib 250 . . . . . 6 ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ dom 𝑅𝑥 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
15143com23 1124 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑦𝑅𝑥 → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
161tsrlin 18218 . . . . 5 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑅𝑦𝑦𝑅𝑥))
172, 15, 16mpjaod 856 . . . 4 ((𝑅 ∈ TosetRel ∧ 𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
18173expb 1118 . . 3 ((𝑅 ∈ TosetRel ∧ (𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅)) → (𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
1918ralrimivva 3114 . 2 (𝑅 ∈ TosetRel → ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
201ordttopon 22252 . . 3 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ (TopOn‘dom 𝑅))
21 ishaus2 22410 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘dom 𝑅) → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2220, 21syl 17 . 2 (𝑅 ∈ TosetRel → ((ordTop‘𝑅) ∈ Haus ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ dom 𝑅(𝑥𝑦 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2319, 22mpbird 256 1 (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  c0 4253   class class class wbr 5070  dom cdm 5580  cfv 6418  ordTopcordt 17127   TosetRel ctsr 18198  TopOnctopon 21967  Hauscha 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-ordt 17129  df-ps 18199  df-tsr 18200  df-top 21951  df-topon 21968  df-bases 22004  df-haus 22374
This theorem is referenced by:  xrhaus  22444  xrge0tsms  23903  xrge0tsmsd  31219
  Copyright terms: Public domain W3C validator