MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclex Structured version   Visualization version   GIF version

Theorem uhgr3cyclex 30201
Description: If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr3cyclex ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem uhgr3cyclex
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edg‘𝐺)
21eleq2i 2833 . . . . . 6 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
3 eqid 2737 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
43uhgredgiedgb 29143 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
52, 4bitrid 283 . . . . 5 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
61eleq2i 2833 . . . . . 6 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
73uhgredgiedgb 29143 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
86, 7bitrid 283 . . . . 5 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
91eleq2i 2833 . . . . . 6 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
103uhgredgiedgb 29143 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
119, 10bitrid 283 . . . . 5 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
125, 8, 113anbi123d 1438 . . . 4 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
1312adantr 480 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
14 eqid 2737 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ = ⟨“𝐴𝐵𝐶𝐴”⟩
15 eqid 2737 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ = ⟨“𝑖𝑗𝑘”⟩
16 3simpa 1149 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
17 pm3.22 459 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
18173adant2 1132 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
1916, 18jca 511 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2019adantr 480 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2120ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
22 3simpa 1149 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐴𝐶))
23 necom 2994 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
2423biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐵𝐵𝐴)
2524anim1ci 616 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐵𝐶) → (𝐵𝐶𝐵𝐴))
26253adant2 1132 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐵𝐶𝐵𝐴))
27 necom 2994 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶𝐶𝐴)
2827biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶𝐶𝐴)
29283ad2ant2 1135 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
3022, 26, 293jca 1129 . . . . . . . . . . . . . . . 16 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3130adantl 481 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3231ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
33 eqimss 4042 . . . . . . . . . . . . . . . . . 18 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3433adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
35343ad2ant3 1136 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
36 eqimss 4042 . . . . . . . . . . . . . . . . . 18 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3736adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
38373ad2ant1 1134 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
39 eqimss 4042 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4039adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
41403ad2ant2 1135 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4235, 38, 413jca 1129 . . . . . . . . . . . . . . 15 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
4342adantl 481 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
44 uhgr3cyclex.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
45 simp3 1139 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
46 simp1 1137 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
4745, 46jca 511 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
4847, 29anim12i 613 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
4948adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
50 pm3.22 459 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
51503adant2 1132 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
5244, 1, 3uhgr3cyclexlem 30200 . . . . . . . . . . . . . . . 16 ((((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))) → 𝑖𝑗)
5349, 51, 52syl2an 596 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑗)
54 3simpc 1151 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
55 simp3 1139 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
5654, 55anim12i 613 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
5756adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
58 3simpc 1151 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))))
5944, 1, 3uhgr3cyclexlem 30200 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑘𝑖)
6059necomd 2996 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6157, 58, 60syl2an 596 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6244, 1, 3uhgr3cyclexlem 30200 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))) → 𝑗𝑘)
6362exp31 419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
64633adant3 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6564com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
66653ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6766impcom 407 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
6867adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
6968com12 32 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
70693adant3 1133 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
7170impcom 407 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑗𝑘)
7253, 61, 713jca 1129 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (𝑖𝑗𝑖𝑘𝑗𝑘))
73 eqidd 2738 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝐴 = 𝐴)
7414, 15, 21, 32, 43, 44, 3, 72, 733cyclpd 30198 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
75 s3cli 14920 . . . . . . . . . . . . . . 15 ⟨“𝑖𝑗𝑘”⟩ ∈ Word V
7675elexi 3503 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ ∈ V
77 s4cli 14921 . . . . . . . . . . . . . . 15 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ Word V
7877elexi 3503 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ V
79 breq12 5148 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → (𝑓(Cycles‘𝐺)𝑝 ↔ ⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩))
80 fveqeq2 6915 . . . . . . . . . . . . . . . 16 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → ((♯‘𝑓) = 3 ↔ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3))
8180adantr 480 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((♯‘𝑓) = 3 ↔ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3))
82 fveq1 6905 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶𝐴”⟩‘0))
8382eqeq1d 2739 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8483adantl 481 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8579, 81, 843anbi123d 1438 . . . . . . . . . . . . . 14 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴) ↔ (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴)))
8676, 78, 85spc2ev 3607 . . . . . . . . . . . . 13 ((⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
8774, 86syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
8887expcom 413 . . . . . . . . . . 11 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
89883exp 1120 . . . . . . . . . 10 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9089rexlimiva 3147 . . . . . . . . 9 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9190com12 32 . . . . . . . 8 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9291rexlimiva 3147 . . . . . . 7 (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9392com13 88 . . . . . 6 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9493rexlimiva 3147 . . . . 5 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
95943imp 1111 . . . 4 ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9695com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9713, 96sylbid 240 . 2 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
98973impia 1118 1 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  wss 3951  {cpr 4628   class class class wbr 5143  dom cdm 5685  cfv 6561  0cc0 11155  3c3 12322  chash 14369  Word cword 14552  ⟨“cs3 14881  ⟨“cs4 14882  Vtxcvtx 29013  iEdgciedg 29014  Edgcedg 29064  UHGraphcuhgr 29073  Cyclesccycls 29805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-s4 14889  df-edg 29065  df-uhgr 29075  df-wlks 29617  df-trls 29710  df-pths 29734  df-cycls 29807
This theorem is referenced by:  umgr3cyclex  30202
  Copyright terms: Public domain W3C validator