MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclex Structured version   Visualization version   GIF version

Theorem uhgr3cyclex 30210
Description: If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr3cyclex ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem uhgr3cyclex
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edg‘𝐺)
21eleq2i 2830 . . . . . 6 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
3 eqid 2734 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
43uhgredgiedgb 29157 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
52, 4bitrid 283 . . . . 5 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
61eleq2i 2830 . . . . . 6 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
73uhgredgiedgb 29157 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
86, 7bitrid 283 . . . . 5 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
91eleq2i 2830 . . . . . 6 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
103uhgredgiedgb 29157 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
119, 10bitrid 283 . . . . 5 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
125, 8, 113anbi123d 1435 . . . 4 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
1312adantr 480 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
14 eqid 2734 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ = ⟨“𝐴𝐵𝐶𝐴”⟩
15 eqid 2734 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ = ⟨“𝑖𝑗𝑘”⟩
16 3simpa 1147 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
17 pm3.22 459 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
18173adant2 1130 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
1916, 18jca 511 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2019adantr 480 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2120ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
22 3simpa 1147 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐴𝐶))
23 necom 2991 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
2423biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐵𝐵𝐴)
2524anim1ci 616 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐵𝐶) → (𝐵𝐶𝐵𝐴))
26253adant2 1130 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐵𝐶𝐵𝐴))
27 necom 2991 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶𝐶𝐴)
2827biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶𝐶𝐴)
29283ad2ant2 1133 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
3022, 26, 293jca 1127 . . . . . . . . . . . . . . . 16 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3130adantl 481 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3231ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
33 eqimss 4053 . . . . . . . . . . . . . . . . . 18 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3433adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
35343ad2ant3 1134 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
36 eqimss 4053 . . . . . . . . . . . . . . . . . 18 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3736adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
38373ad2ant1 1132 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
39 eqimss 4053 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4039adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
41403ad2ant2 1133 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4235, 38, 413jca 1127 . . . . . . . . . . . . . . 15 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
4342adantl 481 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
44 uhgr3cyclex.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
45 simp3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
46 simp1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
4745, 46jca 511 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
4847, 29anim12i 613 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
4948adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
50 pm3.22 459 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
51503adant2 1130 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
5244, 1, 3uhgr3cyclexlem 30209 . . . . . . . . . . . . . . . 16 ((((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))) → 𝑖𝑗)
5349, 51, 52syl2an 596 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑗)
54 3simpc 1149 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
55 simp3 1137 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
5654, 55anim12i 613 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
5756adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
58 3simpc 1149 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))))
5944, 1, 3uhgr3cyclexlem 30209 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑘𝑖)
6059necomd 2993 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6157, 58, 60syl2an 596 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6244, 1, 3uhgr3cyclexlem 30209 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))) → 𝑗𝑘)
6362exp31 419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
64633adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6564com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
66653ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6766impcom 407 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
6867adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
6968com12 32 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
70693adant3 1131 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
7170impcom 407 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑗𝑘)
7253, 61, 713jca 1127 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (𝑖𝑗𝑖𝑘𝑗𝑘))
73 eqidd 2735 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝐴 = 𝐴)
7414, 15, 21, 32, 43, 44, 3, 72, 733cyclpd 30207 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
75 s3cli 14916 . . . . . . . . . . . . . . 15 ⟨“𝑖𝑗𝑘”⟩ ∈ Word V
7675elexi 3500 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ ∈ V
77 s4cli 14917 . . . . . . . . . . . . . . 15 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ Word V
7877elexi 3500 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ V
79 breq12 5152 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → (𝑓(Cycles‘𝐺)𝑝 ↔ ⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩))
80 fveqeq2 6915 . . . . . . . . . . . . . . . 16 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → ((♯‘𝑓) = 3 ↔ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3))
8180adantr 480 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((♯‘𝑓) = 3 ↔ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3))
82 fveq1 6905 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶𝐴”⟩‘0))
8382eqeq1d 2736 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8483adantl 481 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8579, 81, 843anbi123d 1435 . . . . . . . . . . . . . 14 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴) ↔ (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴)))
8676, 78, 85spc2ev 3606 . . . . . . . . . . . . 13 ((⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
8774, 86syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
8887expcom 413 . . . . . . . . . . 11 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
89883exp 1118 . . . . . . . . . 10 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9089rexlimiva 3144 . . . . . . . . 9 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9190com12 32 . . . . . . . 8 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9291rexlimiva 3144 . . . . . . 7 (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9392com13 88 . . . . . 6 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9493rexlimiva 3144 . . . . 5 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
95943imp 1110 . . . 4 ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9695com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9713, 96sylbid 240 . 2 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
98973impia 1116 1 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wrex 3067  Vcvv 3477  wss 3962  {cpr 4632   class class class wbr 5147  dom cdm 5688  cfv 6562  0cc0 11152  3c3 12319  chash 14365  Word cword 14548  ⟨“cs3 14877  ⟨“cs4 14878  Vtxcvtx 29027  iEdgciedg 29028  Edgcedg 29078  UHGraphcuhgr 29087  Cyclesccycls 29817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-s2 14883  df-s3 14884  df-s4 14885  df-edg 29079  df-uhgr 29089  df-wlks 29631  df-trls 29724  df-pths 29748  df-cycls 29819
This theorem is referenced by:  umgr3cyclex  30211
  Copyright terms: Public domain W3C validator