| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > volres | Structured version Visualization version GIF version | ||
| Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| Ref | Expression |
|---|---|
| volres | ⊢ vol = (vol* ↾ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres 6232 | . 2 ⊢ (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
| 2 | df-vol 25436 | . . . 4 ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
| 3 | 2 | dmeqi 5895 | . . 3 ⊢ dom vol = dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) |
| 4 | 3 | reseq2i 5974 | . 2 ⊢ (vol* ↾ dom vol) = (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) |
| 5 | 1, 4, 2 | 3eqtr4ri 2768 | 1 ⊢ vol = (vol* ↾ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {cab 2712 ∀wral 3050 ∖ cdif 3928 ∩ cin 3930 ◡ccnv 5664 dom cdm 5665 ↾ cres 5667 “ cima 5668 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 + caddc 11140 vol*covol 25433 volcvol 25434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-vol 25436 |
| This theorem is referenced by: volf 25500 mblvol 25501 |
| Copyright terms: Public domain | W3C validator |