| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > volres | Structured version Visualization version GIF version | ||
| Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| Ref | Expression |
|---|---|
| volres | ⊢ vol = (vol* ↾ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres 6207 | . 2 ⊢ (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
| 2 | df-vol 25372 | . . . 4 ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
| 3 | 2 | dmeqi 5870 | . . 3 ⊢ dom vol = dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) |
| 4 | 3 | reseq2i 5949 | . 2 ⊢ (vol* ↾ dom vol) = (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) |
| 5 | 1, 4, 2 | 3eqtr4ri 2764 | 1 ⊢ vol = (vol* ↾ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 ∀wral 3045 ∖ cdif 3913 ∩ cin 3915 ◡ccnv 5639 dom cdm 5640 ↾ cres 5642 “ cima 5643 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 + caddc 11077 vol*covol 25369 volcvol 25370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-vol 25372 |
| This theorem is referenced by: volf 25436 mblvol 25437 |
| Copyright terms: Public domain | W3C validator |