MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volres Structured version   Visualization version   GIF version

Theorem volres 25456
Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
volres vol = (vol* ↾ dom vol)

Proof of Theorem volres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resdmres 6179 . 2 (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})) = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
2 df-vol 25393 . . . 4 vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
32dmeqi 5843 . . 3 dom vol = dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
43reseq2i 5924 . 2 (vol* ↾ dom vol) = (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))}))
51, 4, 23eqtr4ri 2765 1 vol = (vol* ↾ dom vol)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  wral 3047  cdif 3894  cin 3896  ccnv 5613  dom cdm 5614  cres 5616  cima 5617  cfv 6481  (class class class)co 7346  cr 11005   + caddc 11009  vol*covol 25390  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-vol 25393
This theorem is referenced by:  volf  25457  mblvol  25458
  Copyright terms: Public domain W3C validator