| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > volres | Structured version Visualization version GIF version | ||
| Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| Ref | Expression |
|---|---|
| volres | ⊢ vol = (vol* ↾ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres 6251 | . 2 ⊢ (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
| 2 | df-vol 25501 | . . . 4 ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
| 3 | 2 | dmeqi 5914 | . . 3 ⊢ dom vol = dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) |
| 4 | 3 | reseq2i 5993 | . 2 ⊢ (vol* ↾ dom vol) = (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) |
| 5 | 1, 4, 2 | 3eqtr4ri 2775 | 1 ⊢ vol = (vol* ↾ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {cab 2713 ∀wral 3060 ∖ cdif 3947 ∩ cin 3949 ◡ccnv 5683 dom cdm 5684 ↾ cres 5686 “ cima 5687 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 + caddc 11159 vol*covol 25498 volcvol 25499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-vol 25501 |
| This theorem is referenced by: volf 25565 mblvol 25566 |
| Copyright terms: Public domain | W3C validator |