Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > volres | Structured version Visualization version GIF version |
Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
volres | ⊢ vol = (vol* ↾ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdmres 6095 | . 2 ⊢ (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
2 | df-vol 24362 | . . . 4 ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | |
3 | 2 | dmeqi 5773 | . . 3 ⊢ dom vol = dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) |
4 | 3 | reseq2i 5848 | . 2 ⊢ (vol* ↾ dom vol) = (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))})) |
5 | 1, 4, 2 | 3eqtr4ri 2776 | 1 ⊢ vol = (vol* ↾ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 {cab 2714 ∀wral 3061 ∖ cdif 3863 ∩ cin 3865 ◡ccnv 5550 dom cdm 5551 ↾ cres 5553 “ cima 5554 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 + caddc 10732 vol*covol 24359 volcvol 24360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-vol 24362 |
This theorem is referenced by: volf 24426 mblvol 24427 |
Copyright terms: Public domain | W3C validator |