MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volres Structured version   Visualization version   GIF version

Theorem volres 25563
Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
volres vol = (vol* ↾ dom vol)

Proof of Theorem volres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resdmres 6252 . 2 (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})) = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
2 df-vol 25500 . . . 4 vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
32dmeqi 5915 . . 3 dom vol = dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
43reseq2i 5994 . 2 (vol* ↾ dom vol) = (vol* ↾ dom (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))}))
51, 4, 23eqtr4ri 2776 1 vol = (vol* ↾ dom vol)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2714  wral 3061  cdif 3948  cin 3950  ccnv 5684  dom cdm 5685  cres 5687  cima 5688  cfv 6561  (class class class)co 7431  cr 11154   + caddc 11158  vol*covol 25497  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-vol 25500
This theorem is referenced by:  volf  25564  mblvol  25565
  Copyright terms: Public domain W3C validator