![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version |
Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volres 25582 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
2 | 1 | fveq1i 6921 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
3 | fvres 6939 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
4 | 2, 3 | eqtrid 2792 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 vol*covol 25516 volcvol 25517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fv 6581 df-vol 25519 |
This theorem is referenced by: volss 25587 volun 25599 volinun 25600 volfiniun 25601 voliunlem3 25606 volsup 25610 iccvolcl 25621 ovolioo 25622 volioo 25623 ioovolcl 25624 uniioovol 25633 uniioombllem4 25640 volcn 25660 volivth 25661 vitalilem4 25665 i1fima2 25733 i1fd 25735 i1f0rn 25736 itg1val2 25738 itg1ge0 25740 itg11 25745 i1fadd 25749 i1fmul 25750 itg1addlem2 25751 itg1addlem4 25753 itg1addlem4OLD 25754 i1fres 25760 itg10a 25765 itg1ge0a 25766 itg1climres 25769 mbfi1fseqlem4 25773 itg2const2 25796 itg2gt0 25815 itg2cnlem2 25817 ftc1a 26098 ftc1lem4 26100 itgulm 26469 areaf 27022 cntnevol 34192 volmeas 34195 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 voliunnfl 37624 volsupnfl 37625 itg2addnclem 37631 itg2addnclem2 37632 itg2gt0cn 37635 ftc1cnnclem 37651 ftc1anclem7 37659 areacirc 37673 arearect 43176 areaquad 43177 vol0 45880 volge0 45882 volsn 45888 volicc 45919 vonvol 46583 |
Copyright terms: Public domain | W3C validator |