| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volres 25499 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6887 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
| 3 | fvres 6905 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2781 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 dom cdm 5665 ↾ cres 5667 ‘cfv 6541 vol*covol 25433 volcvol 25434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-iota 6494 df-fv 6549 df-vol 25436 |
| This theorem is referenced by: volss 25504 volun 25516 volinun 25517 volfiniun 25518 voliunlem3 25523 volsup 25527 iccvolcl 25538 ovolioo 25539 volioo 25540 ioovolcl 25541 uniioovol 25550 uniioombllem4 25557 volcn 25577 volivth 25578 vitalilem4 25582 i1fima2 25650 i1fd 25652 i1f0rn 25653 itg1val2 25655 itg1ge0 25657 itg11 25662 i1fadd 25666 i1fmul 25667 itg1addlem2 25668 itg1addlem4 25670 i1fres 25676 itg10a 25681 itg1ge0a 25682 itg1climres 25685 mbfi1fseqlem4 25689 itg2const2 25712 itg2gt0 25731 itg2cnlem2 25733 ftc1a 26014 ftc1lem4 26016 itgulm 26387 areaf 26940 cntnevol 34188 volmeas 34191 mblfinlem3 37625 mblfinlem4 37626 ismblfin 37627 voliunnfl 37630 volsupnfl 37631 itg2addnclem 37637 itg2addnclem2 37638 itg2gt0cn 37641 ftc1cnnclem 37657 ftc1anclem7 37665 areacirc 37679 arearect 43190 areaquad 43191 vol0 45931 volge0 45933 volsn 45939 volicc 45970 vonvol 46634 |
| Copyright terms: Public domain | W3C validator |