| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volres 25456 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
| 3 | fvres 6841 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2778 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 dom cdm 5614 ↾ cres 5616 ‘cfv 6481 vol*covol 25390 volcvol 25391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fv 6489 df-vol 25393 |
| This theorem is referenced by: volss 25461 volun 25473 volinun 25474 volfiniun 25475 voliunlem3 25480 volsup 25484 iccvolcl 25495 ovolioo 25496 volioo 25497 ioovolcl 25498 uniioovol 25507 uniioombllem4 25514 volcn 25534 volivth 25535 vitalilem4 25539 i1fima2 25607 i1fd 25609 i1f0rn 25610 itg1val2 25612 itg1ge0 25614 itg11 25619 i1fadd 25623 i1fmul 25624 itg1addlem2 25625 itg1addlem4 25627 i1fres 25633 itg10a 25638 itg1ge0a 25639 itg1climres 25642 mbfi1fseqlem4 25646 itg2const2 25669 itg2gt0 25688 itg2cnlem2 25690 ftc1a 25971 ftc1lem4 25973 itgulm 26344 areaf 26898 cntnevol 34241 volmeas 34244 mblfinlem3 37709 mblfinlem4 37710 ismblfin 37711 voliunnfl 37714 volsupnfl 37715 itg2addnclem 37721 itg2addnclem2 37722 itg2gt0cn 37725 ftc1cnnclem 37741 ftc1anclem7 37749 areacirc 37763 arearect 43318 areaquad 43319 vol0 46067 volge0 46069 volsn 46075 volicc 46106 vonvol 46770 |
| Copyright terms: Public domain | W3C validator |