| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volres 25481 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6877 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
| 3 | fvres 6895 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2782 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 dom cdm 5654 ↾ cres 5656 ‘cfv 6531 vol*covol 25415 volcvol 25416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fv 6539 df-vol 25418 |
| This theorem is referenced by: volss 25486 volun 25498 volinun 25499 volfiniun 25500 voliunlem3 25505 volsup 25509 iccvolcl 25520 ovolioo 25521 volioo 25522 ioovolcl 25523 uniioovol 25532 uniioombllem4 25539 volcn 25559 volivth 25560 vitalilem4 25564 i1fima2 25632 i1fd 25634 i1f0rn 25635 itg1val2 25637 itg1ge0 25639 itg11 25644 i1fadd 25648 i1fmul 25649 itg1addlem2 25650 itg1addlem4 25652 i1fres 25658 itg10a 25663 itg1ge0a 25664 itg1climres 25667 mbfi1fseqlem4 25671 itg2const2 25694 itg2gt0 25713 itg2cnlem2 25715 ftc1a 25996 ftc1lem4 25998 itgulm 26369 areaf 26923 cntnevol 34259 volmeas 34262 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 voliunnfl 37688 volsupnfl 37689 itg2addnclem 37695 itg2addnclem2 37696 itg2gt0cn 37699 ftc1cnnclem 37715 ftc1anclem7 37723 areacirc 37737 arearect 43239 areaquad 43240 vol0 45988 volge0 45990 volsn 45996 volicc 46027 vonvol 46691 |
| Copyright terms: Public domain | W3C validator |