| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volres 25427 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
| 3 | fvres 6841 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5619 ↾ cres 5621 ‘cfv 6482 vol*covol 25361 volcvol 25362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6438 df-fv 6490 df-vol 25364 |
| This theorem is referenced by: volss 25432 volun 25444 volinun 25445 volfiniun 25446 voliunlem3 25451 volsup 25455 iccvolcl 25466 ovolioo 25467 volioo 25468 ioovolcl 25469 uniioovol 25478 uniioombllem4 25485 volcn 25505 volivth 25506 vitalilem4 25510 i1fima2 25578 i1fd 25580 i1f0rn 25581 itg1val2 25583 itg1ge0 25585 itg11 25590 i1fadd 25594 i1fmul 25595 itg1addlem2 25596 itg1addlem4 25598 i1fres 25604 itg10a 25609 itg1ge0a 25610 itg1climres 25613 mbfi1fseqlem4 25617 itg2const2 25640 itg2gt0 25659 itg2cnlem2 25661 ftc1a 25942 ftc1lem4 25944 itgulm 26315 areaf 26869 cntnevol 34201 volmeas 34204 mblfinlem3 37649 mblfinlem4 37650 ismblfin 37651 voliunnfl 37654 volsupnfl 37655 itg2addnclem 37661 itg2addnclem2 37662 itg2gt0cn 37665 ftc1cnnclem 37681 ftc1anclem7 37689 areacirc 37703 arearect 43198 areaquad 43199 vol0 45950 volge0 45952 volsn 45958 volicc 45989 vonvol 46653 |
| Copyright terms: Public domain | W3C validator |