| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volres 25462 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6841 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
| 3 | fvres 6859 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5631 ↾ cres 5633 ‘cfv 6499 vol*covol 25396 volcvol 25397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fv 6507 df-vol 25399 |
| This theorem is referenced by: volss 25467 volun 25479 volinun 25480 volfiniun 25481 voliunlem3 25486 volsup 25490 iccvolcl 25501 ovolioo 25502 volioo 25503 ioovolcl 25504 uniioovol 25513 uniioombllem4 25520 volcn 25540 volivth 25541 vitalilem4 25545 i1fima2 25613 i1fd 25615 i1f0rn 25616 itg1val2 25618 itg1ge0 25620 itg11 25625 i1fadd 25629 i1fmul 25630 itg1addlem2 25631 itg1addlem4 25633 i1fres 25639 itg10a 25644 itg1ge0a 25645 itg1climres 25648 mbfi1fseqlem4 25652 itg2const2 25675 itg2gt0 25694 itg2cnlem2 25696 ftc1a 25977 ftc1lem4 25979 itgulm 26350 areaf 26904 cntnevol 34211 volmeas 34214 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 voliunnfl 37651 volsupnfl 37652 itg2addnclem 37658 itg2addnclem2 37659 itg2gt0cn 37662 ftc1cnnclem 37678 ftc1anclem7 37686 areacirc 37700 arearect 43197 areaquad 43198 vol0 45950 volge0 45952 volsn 45958 volicc 45989 vonvol 46653 |
| Copyright terms: Public domain | W3C validator |