|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | volres 25563 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6907 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) | 
| 3 | fvres 6925 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2789 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 dom cdm 5685 ↾ cres 5687 ‘cfv 6561 vol*covol 25497 volcvol 25498 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fv 6569 df-vol 25500 | 
| This theorem is referenced by: volss 25568 volun 25580 volinun 25581 volfiniun 25582 voliunlem3 25587 volsup 25591 iccvolcl 25602 ovolioo 25603 volioo 25604 ioovolcl 25605 uniioovol 25614 uniioombllem4 25621 volcn 25641 volivth 25642 vitalilem4 25646 i1fima2 25714 i1fd 25716 i1f0rn 25717 itg1val2 25719 itg1ge0 25721 itg11 25726 i1fadd 25730 i1fmul 25731 itg1addlem2 25732 itg1addlem4 25734 i1fres 25740 itg10a 25745 itg1ge0a 25746 itg1climres 25749 mbfi1fseqlem4 25753 itg2const2 25776 itg2gt0 25795 itg2cnlem2 25797 ftc1a 26078 ftc1lem4 26080 itgulm 26451 areaf 27004 cntnevol 34229 volmeas 34232 mblfinlem3 37666 mblfinlem4 37667 ismblfin 37668 voliunnfl 37671 volsupnfl 37672 itg2addnclem 37678 itg2addnclem2 37679 itg2gt0cn 37682 ftc1cnnclem 37698 ftc1anclem7 37706 areacirc 37720 arearect 43227 areaquad 43228 vol0 45974 volge0 45976 volsn 45982 volicc 46013 vonvol 46677 | 
| Copyright terms: Public domain | W3C validator |