MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mblvol Structured version   Visualization version   GIF version

Theorem mblvol 25479
Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
mblvol (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))

Proof of Theorem mblvol
StepHypRef Expression
1 volres 25477 . . 3 vol = (vol* ↾ dom vol)
21fveq1i 6903 . 2 (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴)
3 fvres 6921 . 2 (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴))
42, 3eqtrid 2780 1 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  dom cdm 5682  cres 5684  cfv 6553  vol*covol 25411  volcvol 25412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-iota 6505  df-fv 6561  df-vol 25414
This theorem is referenced by:  volss  25482  volun  25494  volinun  25495  volfiniun  25496  voliunlem3  25501  volsup  25505  iccvolcl  25516  ovolioo  25517  volioo  25518  ioovolcl  25519  uniioovol  25528  uniioombllem4  25535  volcn  25555  volivth  25556  vitalilem4  25560  i1fima2  25628  i1fd  25630  i1f0rn  25631  itg1val2  25633  itg1ge0  25635  itg11  25640  i1fadd  25644  i1fmul  25645  itg1addlem2  25646  itg1addlem4  25648  itg1addlem4OLD  25649  i1fres  25655  itg10a  25660  itg1ge0a  25661  itg1climres  25664  mbfi1fseqlem4  25668  itg2const2  25691  itg2gt0  25710  itg2cnlem2  25712  ftc1a  25992  ftc1lem4  25994  itgulm  26364  areaf  26913  cntnevol  33880  volmeas  33883  mblfinlem3  37165  mblfinlem4  37166  ismblfin  37167  voliunnfl  37170  volsupnfl  37171  itg2addnclem  37177  itg2addnclem2  37178  itg2gt0cn  37181  ftc1cnnclem  37197  ftc1anclem7  37205  areacirc  37219  arearect  42674  areaquad  42675  vol0  45376  volge0  45378  volsn  45384  volicc  45415  vonvol  46079
  Copyright terms: Public domain W3C validator