![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version |
Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volres 25577 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
2 | 1 | fveq1i 6908 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
3 | fvres 6926 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
4 | 2, 3 | eqtrid 2787 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 dom cdm 5689 ↾ cres 5691 ‘cfv 6563 vol*covol 25511 volcvol 25512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fv 6571 df-vol 25514 |
This theorem is referenced by: volss 25582 volun 25594 volinun 25595 volfiniun 25596 voliunlem3 25601 volsup 25605 iccvolcl 25616 ovolioo 25617 volioo 25618 ioovolcl 25619 uniioovol 25628 uniioombllem4 25635 volcn 25655 volivth 25656 vitalilem4 25660 i1fima2 25728 i1fd 25730 i1f0rn 25731 itg1val2 25733 itg1ge0 25735 itg11 25740 i1fadd 25744 i1fmul 25745 itg1addlem2 25746 itg1addlem4 25748 itg1addlem4OLD 25749 i1fres 25755 itg10a 25760 itg1ge0a 25761 itg1climres 25764 mbfi1fseqlem4 25768 itg2const2 25791 itg2gt0 25810 itg2cnlem2 25812 ftc1a 26093 ftc1lem4 26095 itgulm 26466 areaf 27019 cntnevol 34209 volmeas 34212 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 voliunnfl 37651 volsupnfl 37652 itg2addnclem 37658 itg2addnclem2 37659 itg2gt0cn 37662 ftc1cnnclem 37678 ftc1anclem7 37686 areacirc 37700 arearect 43204 areaquad 43205 vol0 45915 volge0 45917 volsn 45923 volicc 45954 vonvol 46618 |
Copyright terms: Public domain | W3C validator |