| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volres 25429 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6859 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
| 3 | fvres 6877 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 vol*covol 25363 volcvol 25364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fv 6519 df-vol 25366 |
| This theorem is referenced by: volss 25434 volun 25446 volinun 25447 volfiniun 25448 voliunlem3 25453 volsup 25457 iccvolcl 25468 ovolioo 25469 volioo 25470 ioovolcl 25471 uniioovol 25480 uniioombllem4 25487 volcn 25507 volivth 25508 vitalilem4 25512 i1fima2 25580 i1fd 25582 i1f0rn 25583 itg1val2 25585 itg1ge0 25587 itg11 25592 i1fadd 25596 i1fmul 25597 itg1addlem2 25598 itg1addlem4 25600 i1fres 25606 itg10a 25611 itg1ge0a 25612 itg1climres 25615 mbfi1fseqlem4 25619 itg2const2 25642 itg2gt0 25661 itg2cnlem2 25663 ftc1a 25944 ftc1lem4 25946 itgulm 26317 areaf 26871 cntnevol 34218 volmeas 34221 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 voliunnfl 37658 volsupnfl 37659 itg2addnclem 37665 itg2addnclem2 37666 itg2gt0cn 37669 ftc1cnnclem 37685 ftc1anclem7 37693 areacirc 37707 arearect 43204 areaquad 43205 vol0 45957 volge0 45959 volsn 45965 volicc 45996 vonvol 46660 |
| Copyright terms: Public domain | W3C validator |