Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version |
Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volres 24692 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
2 | 1 | fveq1i 6775 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
3 | fvres 6793 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
4 | 2, 3 | eqtrid 2790 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 dom cdm 5589 ↾ cres 5591 ‘cfv 6433 vol*covol 24626 volcvol 24627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fv 6441 df-vol 24629 |
This theorem is referenced by: volss 24697 volun 24709 volinun 24710 volfiniun 24711 voliunlem3 24716 volsup 24720 iccvolcl 24731 ovolioo 24732 volioo 24733 ioovolcl 24734 uniioovol 24743 uniioombllem4 24750 volcn 24770 volivth 24771 vitalilem4 24775 i1fima2 24843 i1fd 24845 i1f0rn 24846 itg1val2 24848 itg1ge0 24850 itg11 24855 i1fadd 24859 i1fmul 24860 itg1addlem2 24861 itg1addlem4 24863 itg1addlem4OLD 24864 i1fres 24870 itg10a 24875 itg1ge0a 24876 itg1climres 24879 mbfi1fseqlem4 24883 itg2const2 24906 itg2gt0 24925 itg2cnlem2 24927 ftc1a 25201 ftc1lem4 25203 itgulm 25567 areaf 26111 cntnevol 32196 volmeas 32199 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 voliunnfl 35821 volsupnfl 35822 itg2addnclem 35828 itg2addnclem2 35829 itg2gt0cn 35832 ftc1cnnclem 35848 ftc1anclem7 35856 areacirc 35870 arearect 41046 areaquad 41047 vol0 43500 volge0 43502 volsn 43508 volicc 43539 vonvol 44200 |
Copyright terms: Public domain | W3C validator |