![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version |
Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volres 25477 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
2 | 1 | fveq1i 6903 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
3 | fvres 6921 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
4 | 2, 3 | eqtrid 2780 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 dom cdm 5682 ↾ cres 5684 ‘cfv 6553 vol*covol 25411 volcvol 25412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-iota 6505 df-fv 6561 df-vol 25414 |
This theorem is referenced by: volss 25482 volun 25494 volinun 25495 volfiniun 25496 voliunlem3 25501 volsup 25505 iccvolcl 25516 ovolioo 25517 volioo 25518 ioovolcl 25519 uniioovol 25528 uniioombllem4 25535 volcn 25555 volivth 25556 vitalilem4 25560 i1fima2 25628 i1fd 25630 i1f0rn 25631 itg1val2 25633 itg1ge0 25635 itg11 25640 i1fadd 25644 i1fmul 25645 itg1addlem2 25646 itg1addlem4 25648 itg1addlem4OLD 25649 i1fres 25655 itg10a 25660 itg1ge0a 25661 itg1climres 25664 mbfi1fseqlem4 25668 itg2const2 25691 itg2gt0 25710 itg2cnlem2 25712 ftc1a 25992 ftc1lem4 25994 itgulm 26364 areaf 26913 cntnevol 33880 volmeas 33883 mblfinlem3 37165 mblfinlem4 37166 ismblfin 37167 voliunnfl 37170 volsupnfl 37171 itg2addnclem 37177 itg2addnclem2 37178 itg2gt0cn 37181 ftc1cnnclem 37197 ftc1anclem7 37205 areacirc 37219 arearect 42674 areaquad 42675 vol0 45376 volge0 45378 volsn 45384 volicc 45415 vonvol 46079 |
Copyright terms: Public domain | W3C validator |