| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version | ||
| Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volres 25436 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
| 2 | 1 | fveq1i 6862 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
| 3 | fvres 6880 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
| 4 | 2, 3 | eqtrid 2777 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5641 ↾ cres 5643 ‘cfv 6514 vol*covol 25370 volcvol 25371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fv 6522 df-vol 25373 |
| This theorem is referenced by: volss 25441 volun 25453 volinun 25454 volfiniun 25455 voliunlem3 25460 volsup 25464 iccvolcl 25475 ovolioo 25476 volioo 25477 ioovolcl 25478 uniioovol 25487 uniioombllem4 25494 volcn 25514 volivth 25515 vitalilem4 25519 i1fima2 25587 i1fd 25589 i1f0rn 25590 itg1val2 25592 itg1ge0 25594 itg11 25599 i1fadd 25603 i1fmul 25604 itg1addlem2 25605 itg1addlem4 25607 i1fres 25613 itg10a 25618 itg1ge0a 25619 itg1climres 25622 mbfi1fseqlem4 25626 itg2const2 25649 itg2gt0 25668 itg2cnlem2 25670 ftc1a 25951 ftc1lem4 25953 itgulm 26324 areaf 26878 cntnevol 34225 volmeas 34228 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 voliunnfl 37665 volsupnfl 37666 itg2addnclem 37672 itg2addnclem2 37673 itg2gt0cn 37676 ftc1cnnclem 37692 ftc1anclem7 37700 areacirc 37714 arearect 43211 areaquad 43212 vol0 45964 volge0 45966 volsn 45972 volicc 46003 vonvol 46667 |
| Copyright terms: Public domain | W3C validator |