Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mblvol | Structured version Visualization version GIF version |
Description: The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
Ref | Expression |
---|---|
mblvol | ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volres 24597 | . . 3 ⊢ vol = (vol* ↾ dom vol) | |
2 | 1 | fveq1i 6757 | . 2 ⊢ (vol‘𝐴) = ((vol* ↾ dom vol)‘𝐴) |
3 | fvres 6775 | . 2 ⊢ (𝐴 ∈ dom vol → ((vol* ↾ dom vol)‘𝐴) = (vol*‘𝐴)) | |
4 | 2, 3 | syl5eq 2791 | 1 ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 vol*covol 24531 volcvol 24532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fv 6426 df-vol 24534 |
This theorem is referenced by: volss 24602 volun 24614 volinun 24615 volfiniun 24616 voliunlem3 24621 volsup 24625 iccvolcl 24636 ovolioo 24637 volioo 24638 ioovolcl 24639 uniioovol 24648 uniioombllem4 24655 volcn 24675 volivth 24676 vitalilem4 24680 i1fima2 24748 i1fd 24750 i1f0rn 24751 itg1val2 24753 itg1ge0 24755 itg11 24760 i1fadd 24764 i1fmul 24765 itg1addlem2 24766 itg1addlem4 24768 itg1addlem4OLD 24769 i1fres 24775 itg10a 24780 itg1ge0a 24781 itg1climres 24784 mbfi1fseqlem4 24788 itg2const2 24811 itg2gt0 24830 itg2cnlem2 24832 ftc1a 25106 ftc1lem4 25108 itgulm 25472 areaf 26016 cntnevol 32096 volmeas 32099 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 voliunnfl 35748 volsupnfl 35749 itg2addnclem 35755 itg2addnclem2 35756 itg2gt0cn 35759 ftc1cnnclem 35775 ftc1anclem7 35783 areacirc 35797 arearect 40962 areaquad 40963 vol0 43390 volge0 43392 volsn 43398 volicc 43429 vonvol 44090 |
Copyright terms: Public domain | W3C validator |