MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volf Structured version   Visualization version   GIF version

Theorem volf 25583
Description: The domain and codomain of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014.)
Assertion
Ref Expression
volf vol:dom vol⟶(0[,]+∞)

Proof of Theorem volf
StepHypRef Expression
1 ovolf 25536 . . . . . 6 vol*:𝒫 ℝ⟶(0[,]+∞)
2 ffun 6750 . . . . . 6 (vol*:𝒫 ℝ⟶(0[,]+∞) → Fun vol*)
3 funres 6620 . . . . . 6 (Fun vol* → Fun (vol* ↾ dom vol))
41, 2, 3mp2b 10 . . . . 5 Fun (vol* ↾ dom vol)
5 volres 25582 . . . . . 6 vol = (vol* ↾ dom vol)
65funeqi 6599 . . . . 5 (Fun vol ↔ Fun (vol* ↾ dom vol))
74, 6mpbir 231 . . . 4 Fun vol
8 resss 6031 . . . . . 6 (vol* ↾ dom vol) ⊆ vol*
95, 8eqsstri 4043 . . . . 5 vol ⊆ vol*
10 fssxp 6775 . . . . . 6 (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* ⊆ (𝒫 ℝ × (0[,]+∞)))
111, 10ax-mp 5 . . . . 5 vol* ⊆ (𝒫 ℝ × (0[,]+∞))
129, 11sstri 4018 . . . 4 vol ⊆ (𝒫 ℝ × (0[,]+∞))
137, 12pm3.2i 470 . . 3 (Fun vol ∧ vol ⊆ (𝒫 ℝ × (0[,]+∞)))
14 funssxp 6776 . . 3 ((Fun vol ∧ vol ⊆ (𝒫 ℝ × (0[,]+∞))) ↔ (vol:dom vol⟶(0[,]+∞) ∧ dom vol ⊆ 𝒫 ℝ))
1513, 14mpbi 230 . 2 (vol:dom vol⟶(0[,]+∞) ∧ dom vol ⊆ 𝒫 ℝ)
1615simpli 483 1 vol:dom vol⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wss 3976  𝒫 cpw 4622   × cxp 5698  dom cdm 5700  cres 5702  Fun wfun 6567  wf 6569  (class class class)co 7448  cr 11183  0cc0 11184  +∞cpnf 11321  [,]cicc 13410  vol*covol 25516  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-ovol 25518  df-vol 25519
This theorem is referenced by:  volsup  25610  volsup2  25659  volivth  25661  itg1climres  25769  itg2const2  25796  itg2gt0  25815  areambl  27019  voliune  34193  volfiniune  34194  volmeas  34195  volsupnfl  37625  areacirc  37673  arearect  43176  areaquad  43177  volioof  45908  volicoff  45916  voliooicof  45917  fourierdlem87  46114  voliunsge0lem  46393  volmea  46395  hoidmv1lelem1  46512  hoidmv1lelem2  46513  hoidmv1lelem3  46514  ovolval4lem1  46570  ovolval5lem1  46573
  Copyright terms: Public domain W3C validator