MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1ind Structured version   Visualization version   GIF version

Theorem pf1ind 22242
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1ind.cb 𝐵 = (Base‘𝑅)
pf1ind.cp + = (+g𝑅)
pf1ind.ct · = (.r𝑅)
pf1ind.cq 𝑄 = ran (eval1𝑅)
pf1ind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
pf1ind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
pf1ind.wa (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
pf1ind.wb (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
pf1ind.wc (𝑥 = 𝑓 → (𝜓𝜏))
pf1ind.wd (𝑥 = 𝑔 → (𝜓𝜂))
pf1ind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
pf1ind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
pf1ind.wg (𝑥 = 𝐴 → (𝜓𝜌))
pf1ind.co ((𝜑𝑓𝐵) → 𝜒)
pf1ind.pr (𝜑𝜃)
pf1ind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
pf1ind (𝜑𝜌)
Distinct variable groups:   𝑓,𝑔,𝑥, +   𝐵,𝑓,𝑔,𝑥   𝜂,𝑓,𝑥   𝜑,𝑓,𝑔   𝑥,𝐴   𝜒,𝑥   𝜓,𝑓,𝑔   𝑄,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   · ,𝑓,𝑔,𝑥   𝜁,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥,𝑓,𝑔)

Proof of Theorem pf1ind
Dummy variables 𝑎 𝑏 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 6238 . . . . 5 ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
2 df1o2 8441 . . . . . . . . 9 1o = {∅}
3 pf1ind.cb . . . . . . . . . 10 𝐵 = (Base‘𝑅)
43fvexi 6872 . . . . . . . . 9 𝐵 ∈ V
5 0ex 5262 . . . . . . . . 9 ∅ ∈ V
6 eqid 2729 . . . . . . . . 9 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))
72, 4, 5, 6mapsncnv 8866 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑤𝐵 ↦ (1o × {𝑤}))
87coeq2i 5824 . . . . . . 7 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))
92, 4, 5, 6mapsnf1o2 8867 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵
10 f1ococnv2 6827 . . . . . . . 8 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
119, 10mp1i 13 . . . . . . 7 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
128, 11eqtr3id 2778 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ( I ↾ 𝐵))
1312coeq2d 5826 . . . . 5 (𝜑 → (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) = (𝐴 ∘ ( I ↾ 𝐵)))
141, 13eqtrid 2776 . . . 4 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ( I ↾ 𝐵)))
15 pf1ind.a . . . . 5 (𝜑𝐴𝑄)
16 pf1ind.cq . . . . . 6 𝑄 = ran (eval1𝑅)
1716, 3pf1f 22237 . . . . 5 (𝐴𝑄𝐴:𝐵𝐵)
18 fcoi1 6734 . . . . 5 (𝐴:𝐵𝐵 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
2014, 19eqtrd 2764 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = 𝐴)
21 pf1ind.cp . . . 4 + = (+g𝑅)
22 pf1ind.ct . . . 4 · = (.r𝑅)
23 eqid 2729 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
2423, 3evlval 22002 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
2524rneqi 5901 . . . 4 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
26 an4 656 . . . . . 6 (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) ↔ ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
27 eqid 2729 . . . . . . . . . . . 12 ran (1o eval 𝑅) = ran (1o eval 𝑅)
2816, 3, 27mpfpf1 22238 . . . . . . . . . . 11 (𝑎 ∈ ran (1o eval 𝑅) → (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
2916, 3, 27mpfpf1 22238 . . . . . . . . . . 11 (𝑏 ∈ ran (1o eval 𝑅) → (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
30 vex 3451 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
31 pf1ind.wc . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑓 → (𝜓𝜏))
3230, 31elab 3646 . . . . . . . . . . . . . . . 16 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
33 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓 ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3432, 33bitr3id 285 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜏 ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3534anbi1d 631 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝜏𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂)))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝜏𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑)))
37 ovex 7420 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
38 pf1ind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
3937, 38elab 3646 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
40 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔))
4140eleq1d 2813 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4239, 41bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜁 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4336, 42imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜁) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓})))
44 vex 3451 . . . . . . . . . . . . . . . . 17 𝑔 ∈ V
45 pf1ind.wd . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑔 → (𝜓𝜂))
4644, 45elab 3646 . . . . . . . . . . . . . . . 16 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
47 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑔 ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4846, 47bitr3id 285 . . . . . . . . . . . . . . 15 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜂 ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4948anbi2d 630 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
5049anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑)))
51 oveq2 7395 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
5251eleq1d 2813 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5350, 52imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
54 pf1ind.ad . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
5554expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜁))
5655an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜁))
5756expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜁))
5843, 53, 57vtocl2ga 3544 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5928, 29, 58syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6059expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
6160impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6225, 3mpff 22011 . . . . . . . . . . . 12 (𝑎 ∈ ran (1o eval 𝑅) → 𝑎:(𝐵m 1o)⟶𝐵)
6362ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎:(𝐵m 1o)⟶𝐵)
6463ffnd 6689 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎 Fn (𝐵m 1o))
6525, 3mpff 22011 . . . . . . . . . . . 12 (𝑏 ∈ ran (1o eval 𝑅) → 𝑏:(𝐵m 1o)⟶𝐵)
6665ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏:(𝐵m 1o)⟶𝐵)
6766ffnd 6689 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏 Fn (𝐵m 1o))
68 eqid 2729 . . . . . . . . . . . 12 (𝑤𝐵 ↦ (1o × {𝑤})) = (𝑤𝐵 ↦ (1o × {𝑤}))
692, 4, 5, 68mapsnf1o3 8868 . . . . . . . . . . 11 (𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o)
70 f1of 6800 . . . . . . . . . . 11 ((𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
7169, 70mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
72 ovexd 7422 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝐵m 1o) ∈ V)
734a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝐵 ∈ V)
74 inidm 4190 . . . . . . . . . 10 ((𝐵m 1o) ∩ (𝐵m 1o)) = (𝐵m 1o)
7564, 67, 71, 72, 72, 73, 74ofco 7678 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
7675eleq1d 2813 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
7761, 76sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7877expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7926, 78biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
8079imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
81 ovex 7420 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
82 pf1ind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
8381, 82elab 3646 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
84 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔))
8584eleq1d 2813 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8683, 85bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜎 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8736, 86imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜎) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓})))
88 oveq2 7395 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
8988eleq1d 2813 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9050, 89imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
91 pf1ind.mu . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
9291expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜎))
9392an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜎))
9493expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜎))
9587, 90, 94vtocl2ga 3544 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9628, 29, 95syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9796expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
9897impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9964, 67, 71, 72, 72, 73, 74ofco 7678 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
10099eleq1d 2813 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
10198, 100sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
102101expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
10326, 102biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
104103imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
105 coeq1 5821 . . . . 5 (𝑦 = ((𝐵m 1o) × {𝑎}) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
106105eleq1d 2813 . . . 4 (𝑦 = ((𝐵m 1o) × {𝑎}) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
107 coeq1 5821 . . . . 5 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
108107eleq1d 2813 . . . 4 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
109 coeq1 5821 . . . . 5 (𝑦 = 𝑎 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
110109eleq1d 2813 . . . 4 (𝑦 = 𝑎 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
111 coeq1 5821 . . . . 5 (𝑦 = 𝑏 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
112111eleq1d 2813 . . . 4 (𝑦 = 𝑏 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
113 coeq1 5821 . . . . 5 (𝑦 = (𝑎f + 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
114113eleq1d 2813 . . . 4 (𝑦 = (𝑎f + 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
115 coeq1 5821 . . . . 5 (𝑦 = (𝑎f · 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
116115eleq1d 2813 . . . 4 (𝑦 = (𝑎f · 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
117 coeq1 5821 . . . . 5 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
118117eleq1d 2813 . . . 4 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
11916pf1rcl 22236 . . . . . . . . 9 (𝐴𝑄𝑅 ∈ CRing)
12015, 119syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
121120adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑅 ∈ CRing)
122 1on 8446 . . . . . . . . . . . 12 1o ∈ On
123 eqid 2729 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
124123mplassa 21931 . . . . . . . . . . . 12 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o mPoly 𝑅) ∈ AssAlg)
125122, 120, 124sylancr 587 . . . . . . . . . . 11 (𝜑 → (1o mPoly 𝑅) ∈ AssAlg)
126 eqid 2729 . . . . . . . . . . . . 13 (Poly1𝑅) = (Poly1𝑅)
127 eqid 2729 . . . . . . . . . . . . 13 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
128126, 127ply1ascl 22144 . . . . . . . . . . . 12 (algSc‘(Poly1𝑅)) = (algSc‘(1o mPoly 𝑅))
129 eqid 2729 . . . . . . . . . . . 12 (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅))
130128, 129asclrhm 21799 . . . . . . . . . . 11 ((1o mPoly 𝑅) ∈ AssAlg → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
131125, 130syl 17 . . . . . . . . . 10 (𝜑 → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
132122a1i 11 . . . . . . . . . . . 12 (𝜑 → 1o ∈ On)
133123, 132, 120mplsca 21922 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘(1o mPoly 𝑅)))
134133oveq1d 7402 . . . . . . . . . 10 (𝜑 → (𝑅 RingHom (1o mPoly 𝑅)) = ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
135131, 134eleqtrrd 2831 . . . . . . . . 9 (𝜑 → (algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)))
136 eqid 2729 . . . . . . . . . 10 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
1373, 136rhmf 20394 . . . . . . . . 9 ((algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
138135, 137syl 17 . . . . . . . 8 (𝜑 → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
139138ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑎𝐵) → ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅)))
140 eqid 2729 . . . . . . . 8 (eval1𝑅) = (eval1𝑅)
141140, 23, 3, 123, 136evl1val 22216 . . . . . . 7 ((𝑅 ∈ CRing ∧ ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
142121, 139, 141syl2anc 584 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
143140, 126, 3, 127evl1sca 22221 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
144120, 143sylan 580 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
1453ressid 17214 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
146121, 145syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → (𝑅s 𝐵) = 𝑅)
147146oveq2d 7403 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
148147fveq2d 6862 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
149148, 128eqtr4di 2782 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(Poly1𝑅)))
150149fveq1d 6860 . . . . . . . . 9 ((𝜑𝑎𝐵) → ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎) = ((algSc‘(Poly1𝑅))‘𝑎))
151150fveq2d 6862 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)))
152 eqid 2729 . . . . . . . . 9 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
153 eqid 2729 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
154 eqid 2729 . . . . . . . . 9 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
155122a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐵) → 1o ∈ On)
156 crngring 20154 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1573subrgid 20482 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
158120, 156, 1573syl 18 . . . . . . . . . 10 (𝜑𝐵 ∈ (SubRing‘𝑅))
159158adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 ∈ (SubRing‘𝑅))
160 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝐵)
16124, 152, 153, 3, 154, 155, 121, 159, 160evlssca 21996 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
162151, 161eqtr3d 2766 . . . . . . 7 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
163162coeq1d 5825 . . . . . 6 ((𝜑𝑎𝐵) → (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
164142, 144, 1633eqtr3d 2772 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
165 pf1ind.co . . . . . . . 8 ((𝜑𝑓𝐵) → 𝜒)
166 vsnex 5389 . . . . . . . . . 10 {𝑓} ∈ V
1674, 166xpex 7729 . . . . . . . . 9 (𝐵 × {𝑓}) ∈ V
168 pf1ind.wa . . . . . . . . 9 (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
169167, 168elab 3646 . . . . . . . 8 ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
170165, 169sylibr 234 . . . . . . 7 ((𝜑𝑓𝐵) → (𝐵 × {𝑓}) ∈ {𝑥𝜓})
171170ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓})
172 sneq 4599 . . . . . . . . 9 (𝑓 = 𝑎 → {𝑓} = {𝑎})
173172xpeq2d 5668 . . . . . . . 8 (𝑓 = 𝑎 → (𝐵 × {𝑓}) = (𝐵 × {𝑎}))
174173eleq1d 2813 . . . . . . 7 (𝑓 = 𝑎 → ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ (𝐵 × {𝑎}) ∈ {𝑥𝜓}))
175174rspccva 3587 . . . . . 6 ((∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓} ∧ 𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
176171, 175sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
177164, 176eqeltrrd 2829 . . . 4 ((𝜑𝑎𝐵) → (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
178 pf1ind.pr . . . . . . . 8 (𝜑𝜃)
179 resiexg 7888 . . . . . . . . . 10 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
1804, 179ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐵) ∈ V
181 pf1ind.wb . . . . . . . . 9 (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
182180, 181elab 3646 . . . . . . . 8 (( I ↾ 𝐵) ∈ {𝑥𝜓} ↔ 𝜃)
183178, 182sylibr 234 . . . . . . 7 (𝜑 → ( I ↾ 𝐵) ∈ {𝑥𝜓})
18412, 183eqeltrd 2828 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
185 el1o 8459 . . . . . . . . . 10 (𝑎 ∈ 1o𝑎 = ∅)
186 fveq2 6858 . . . . . . . . . 10 (𝑎 = ∅ → (𝑏𝑎) = (𝑏‘∅))
187185, 186sylbi 217 . . . . . . . . 9 (𝑎 ∈ 1o → (𝑏𝑎) = (𝑏‘∅))
188187mpteq2dv 5201 . . . . . . . 8 (𝑎 ∈ 1o → (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)))
189188coeq1d 5825 . . . . . . 7 (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
190189eleq1d 2813 . . . . . 6 (𝑎 ∈ 1o → (((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
191184, 190syl5ibrcom 247 . . . . 5 (𝜑 → (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
192191imp 406 . . . 4 ((𝜑𝑎 ∈ 1o) → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19316, 3, 27pf1mpf 22239 . . . . 5 (𝐴𝑄 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
19415, 193syl 17 . . . 4 (𝜑 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
1953, 21, 22, 25, 80, 104, 106, 108, 110, 112, 114, 116, 118, 177, 192, 194mpfind 22014 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19620, 195eqeltrrd 2829 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
197 pf1ind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
198197elabg 3643 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
19915, 198syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
200196, 199mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  c0 4296  {csn 4589  cmpt 5188   I cid 5532   × cxp 5636  ccnv 5637  ran crn 5639  cres 5640  ccom 5642  Oncon0 6332  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  f cof 7651  1oc1o 8427  m cmap 8799  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478  AssAlgcasa 21759  algSccascl 21761   mPoly cmpl 21815   evalSub ces 21979   eval cevl 21980  Poly1cpl1 22061  eval1ce1 22201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-ply1 22066  df-evl1 22203
This theorem is referenced by:  pl1cn  33945
  Copyright terms: Public domain W3C validator