MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1ind Structured version   Visualization version   GIF version

Theorem pf1ind 22258
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1ind.cb 𝐵 = (Base‘𝑅)
pf1ind.cp + = (+g𝑅)
pf1ind.ct · = (.r𝑅)
pf1ind.cq 𝑄 = ran (eval1𝑅)
pf1ind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
pf1ind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
pf1ind.wa (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
pf1ind.wb (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
pf1ind.wc (𝑥 = 𝑓 → (𝜓𝜏))
pf1ind.wd (𝑥 = 𝑔 → (𝜓𝜂))
pf1ind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
pf1ind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
pf1ind.wg (𝑥 = 𝐴 → (𝜓𝜌))
pf1ind.co ((𝜑𝑓𝐵) → 𝜒)
pf1ind.pr (𝜑𝜃)
pf1ind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
pf1ind (𝜑𝜌)
Distinct variable groups:   𝑓,𝑔,𝑥, +   𝐵,𝑓,𝑔,𝑥   𝜂,𝑓,𝑥   𝜑,𝑓,𝑔   𝑥,𝐴   𝜒,𝑥   𝜓,𝑓,𝑔   𝑄,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   · ,𝑓,𝑔,𝑥   𝜁,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥,𝑓,𝑔)

Proof of Theorem pf1ind
Dummy variables 𝑎 𝑏 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 6218 . . . . 5 ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
2 df1o2 8402 . . . . . . . . 9 1o = {∅}
3 pf1ind.cb . . . . . . . . . 10 𝐵 = (Base‘𝑅)
43fvexi 6840 . . . . . . . . 9 𝐵 ∈ V
5 0ex 5249 . . . . . . . . 9 ∅ ∈ V
6 eqid 2729 . . . . . . . . 9 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))
72, 4, 5, 6mapsncnv 8827 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑤𝐵 ↦ (1o × {𝑤}))
87coeq2i 5807 . . . . . . 7 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))
92, 4, 5, 6mapsnf1o2 8828 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵
10 f1ococnv2 6795 . . . . . . . 8 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
119, 10mp1i 13 . . . . . . 7 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
128, 11eqtr3id 2778 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ( I ↾ 𝐵))
1312coeq2d 5809 . . . . 5 (𝜑 → (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) = (𝐴 ∘ ( I ↾ 𝐵)))
141, 13eqtrid 2776 . . . 4 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ( I ↾ 𝐵)))
15 pf1ind.a . . . . 5 (𝜑𝐴𝑄)
16 pf1ind.cq . . . . . 6 𝑄 = ran (eval1𝑅)
1716, 3pf1f 22253 . . . . 5 (𝐴𝑄𝐴:𝐵𝐵)
18 fcoi1 6702 . . . . 5 (𝐴:𝐵𝐵 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
2014, 19eqtrd 2764 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = 𝐴)
21 pf1ind.cp . . . 4 + = (+g𝑅)
22 pf1ind.ct . . . 4 · = (.r𝑅)
23 eqid 2729 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
2423, 3evlval 22018 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
2524rneqi 5883 . . . 4 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
26 an4 656 . . . . . 6 (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) ↔ ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
27 eqid 2729 . . . . . . . . . . . 12 ran (1o eval 𝑅) = ran (1o eval 𝑅)
2816, 3, 27mpfpf1 22254 . . . . . . . . . . 11 (𝑎 ∈ ran (1o eval 𝑅) → (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
2916, 3, 27mpfpf1 22254 . . . . . . . . . . 11 (𝑏 ∈ ran (1o eval 𝑅) → (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
30 vex 3442 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
31 pf1ind.wc . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑓 → (𝜓𝜏))
3230, 31elab 3637 . . . . . . . . . . . . . . . 16 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
33 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓 ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3432, 33bitr3id 285 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜏 ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3534anbi1d 631 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝜏𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂)))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝜏𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑)))
37 ovex 7386 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
38 pf1ind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
3937, 38elab 3637 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
40 oveq1 7360 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔))
4140eleq1d 2813 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4239, 41bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜁 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4336, 42imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜁) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓})))
44 vex 3442 . . . . . . . . . . . . . . . . 17 𝑔 ∈ V
45 pf1ind.wd . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑔 → (𝜓𝜂))
4644, 45elab 3637 . . . . . . . . . . . . . . . 16 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
47 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑔 ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4846, 47bitr3id 285 . . . . . . . . . . . . . . 15 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜂 ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4948anbi2d 630 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
5049anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑)))
51 oveq2 7361 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
5251eleq1d 2813 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5350, 52imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
54 pf1ind.ad . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
5554expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜁))
5655an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜁))
5756expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜁))
5843, 53, 57vtocl2ga 3535 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5928, 29, 58syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6059expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
6160impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6225, 3mpff 22027 . . . . . . . . . . . 12 (𝑎 ∈ ran (1o eval 𝑅) → 𝑎:(𝐵m 1o)⟶𝐵)
6362ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎:(𝐵m 1o)⟶𝐵)
6463ffnd 6657 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎 Fn (𝐵m 1o))
6525, 3mpff 22027 . . . . . . . . . . . 12 (𝑏 ∈ ran (1o eval 𝑅) → 𝑏:(𝐵m 1o)⟶𝐵)
6665ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏:(𝐵m 1o)⟶𝐵)
6766ffnd 6657 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏 Fn (𝐵m 1o))
68 eqid 2729 . . . . . . . . . . . 12 (𝑤𝐵 ↦ (1o × {𝑤})) = (𝑤𝐵 ↦ (1o × {𝑤}))
692, 4, 5, 68mapsnf1o3 8829 . . . . . . . . . . 11 (𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o)
70 f1of 6768 . . . . . . . . . . 11 ((𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
7169, 70mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
72 ovexd 7388 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝐵m 1o) ∈ V)
734a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝐵 ∈ V)
74 inidm 4180 . . . . . . . . . 10 ((𝐵m 1o) ∩ (𝐵m 1o)) = (𝐵m 1o)
7564, 67, 71, 72, 72, 73, 74ofco 7642 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
7675eleq1d 2813 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
7761, 76sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7877expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7926, 78biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
8079imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
81 ovex 7386 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
82 pf1ind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
8381, 82elab 3637 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
84 oveq1 7360 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔))
8584eleq1d 2813 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8683, 85bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜎 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8736, 86imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜎) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓})))
88 oveq2 7361 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
8988eleq1d 2813 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9050, 89imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
91 pf1ind.mu . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
9291expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜎))
9392an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜎))
9493expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜎))
9587, 90, 94vtocl2ga 3535 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9628, 29, 95syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9796expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
9897impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9964, 67, 71, 72, 72, 73, 74ofco 7642 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
10099eleq1d 2813 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
10198, 100sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
102101expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
10326, 102biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
104103imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
105 coeq1 5804 . . . . 5 (𝑦 = ((𝐵m 1o) × {𝑎}) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
106105eleq1d 2813 . . . 4 (𝑦 = ((𝐵m 1o) × {𝑎}) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
107 coeq1 5804 . . . . 5 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
108107eleq1d 2813 . . . 4 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
109 coeq1 5804 . . . . 5 (𝑦 = 𝑎 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
110109eleq1d 2813 . . . 4 (𝑦 = 𝑎 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
111 coeq1 5804 . . . . 5 (𝑦 = 𝑏 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
112111eleq1d 2813 . . . 4 (𝑦 = 𝑏 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
113 coeq1 5804 . . . . 5 (𝑦 = (𝑎f + 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
114113eleq1d 2813 . . . 4 (𝑦 = (𝑎f + 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
115 coeq1 5804 . . . . 5 (𝑦 = (𝑎f · 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
116115eleq1d 2813 . . . 4 (𝑦 = (𝑎f · 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
117 coeq1 5804 . . . . 5 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
118117eleq1d 2813 . . . 4 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
11916pf1rcl 22252 . . . . . . . . 9 (𝐴𝑄𝑅 ∈ CRing)
12015, 119syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
121120adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑅 ∈ CRing)
122 1on 8407 . . . . . . . . . . . 12 1o ∈ On
123 eqid 2729 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
124123mplassa 21947 . . . . . . . . . . . 12 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o mPoly 𝑅) ∈ AssAlg)
125122, 120, 124sylancr 587 . . . . . . . . . . 11 (𝜑 → (1o mPoly 𝑅) ∈ AssAlg)
126 eqid 2729 . . . . . . . . . . . . 13 (Poly1𝑅) = (Poly1𝑅)
127 eqid 2729 . . . . . . . . . . . . 13 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
128126, 127ply1ascl 22160 . . . . . . . . . . . 12 (algSc‘(Poly1𝑅)) = (algSc‘(1o mPoly 𝑅))
129 eqid 2729 . . . . . . . . . . . 12 (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅))
130128, 129asclrhm 21815 . . . . . . . . . . 11 ((1o mPoly 𝑅) ∈ AssAlg → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
131125, 130syl 17 . . . . . . . . . 10 (𝜑 → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
132122a1i 11 . . . . . . . . . . . 12 (𝜑 → 1o ∈ On)
133123, 132, 120mplsca 21938 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘(1o mPoly 𝑅)))
134133oveq1d 7368 . . . . . . . . . 10 (𝜑 → (𝑅 RingHom (1o mPoly 𝑅)) = ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
135131, 134eleqtrrd 2831 . . . . . . . . 9 (𝜑 → (algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)))
136 eqid 2729 . . . . . . . . . 10 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
1373, 136rhmf 20388 . . . . . . . . 9 ((algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
138135, 137syl 17 . . . . . . . 8 (𝜑 → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
139138ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑎𝐵) → ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅)))
140 eqid 2729 . . . . . . . 8 (eval1𝑅) = (eval1𝑅)
141140, 23, 3, 123, 136evl1val 22232 . . . . . . 7 ((𝑅 ∈ CRing ∧ ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
142121, 139, 141syl2anc 584 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
143140, 126, 3, 127evl1sca 22237 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
144120, 143sylan 580 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
1453ressid 17173 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
146121, 145syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → (𝑅s 𝐵) = 𝑅)
147146oveq2d 7369 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
148147fveq2d 6830 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
149148, 128eqtr4di 2782 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(Poly1𝑅)))
150149fveq1d 6828 . . . . . . . . 9 ((𝜑𝑎𝐵) → ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎) = ((algSc‘(Poly1𝑅))‘𝑎))
151150fveq2d 6830 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)))
152 eqid 2729 . . . . . . . . 9 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
153 eqid 2729 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
154 eqid 2729 . . . . . . . . 9 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
155122a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐵) → 1o ∈ On)
156 crngring 20148 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1573subrgid 20476 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
158120, 156, 1573syl 18 . . . . . . . . . 10 (𝜑𝐵 ∈ (SubRing‘𝑅))
159158adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 ∈ (SubRing‘𝑅))
160 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝐵)
16124, 152, 153, 3, 154, 155, 121, 159, 160evlssca 22012 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
162151, 161eqtr3d 2766 . . . . . . 7 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
163162coeq1d 5808 . . . . . 6 ((𝜑𝑎𝐵) → (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
164142, 144, 1633eqtr3d 2772 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
165 pf1ind.co . . . . . . . 8 ((𝜑𝑓𝐵) → 𝜒)
166 vsnex 5376 . . . . . . . . . 10 {𝑓} ∈ V
1674, 166xpex 7693 . . . . . . . . 9 (𝐵 × {𝑓}) ∈ V
168 pf1ind.wa . . . . . . . . 9 (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
169167, 168elab 3637 . . . . . . . 8 ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
170165, 169sylibr 234 . . . . . . 7 ((𝜑𝑓𝐵) → (𝐵 × {𝑓}) ∈ {𝑥𝜓})
171170ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓})
172 sneq 4589 . . . . . . . . 9 (𝑓 = 𝑎 → {𝑓} = {𝑎})
173172xpeq2d 5653 . . . . . . . 8 (𝑓 = 𝑎 → (𝐵 × {𝑓}) = (𝐵 × {𝑎}))
174173eleq1d 2813 . . . . . . 7 (𝑓 = 𝑎 → ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ (𝐵 × {𝑎}) ∈ {𝑥𝜓}))
175174rspccva 3578 . . . . . 6 ((∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓} ∧ 𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
176171, 175sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
177164, 176eqeltrrd 2829 . . . 4 ((𝜑𝑎𝐵) → (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
178 pf1ind.pr . . . . . . . 8 (𝜑𝜃)
179 resiexg 7852 . . . . . . . . . 10 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
1804, 179ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐵) ∈ V
181 pf1ind.wb . . . . . . . . 9 (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
182180, 181elab 3637 . . . . . . . 8 (( I ↾ 𝐵) ∈ {𝑥𝜓} ↔ 𝜃)
183178, 182sylibr 234 . . . . . . 7 (𝜑 → ( I ↾ 𝐵) ∈ {𝑥𝜓})
18412, 183eqeltrd 2828 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
185 el1o 8420 . . . . . . . . . 10 (𝑎 ∈ 1o𝑎 = ∅)
186 fveq2 6826 . . . . . . . . . 10 (𝑎 = ∅ → (𝑏𝑎) = (𝑏‘∅))
187185, 186sylbi 217 . . . . . . . . 9 (𝑎 ∈ 1o → (𝑏𝑎) = (𝑏‘∅))
188187mpteq2dv 5189 . . . . . . . 8 (𝑎 ∈ 1o → (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)))
189188coeq1d 5808 . . . . . . 7 (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
190189eleq1d 2813 . . . . . 6 (𝑎 ∈ 1o → (((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
191184, 190syl5ibrcom 247 . . . . 5 (𝜑 → (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
192191imp 406 . . . 4 ((𝜑𝑎 ∈ 1o) → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19316, 3, 27pf1mpf 22255 . . . . 5 (𝐴𝑄 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
19415, 193syl 17 . . . 4 (𝜑 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
1953, 21, 22, 25, 80, 104, 106, 108, 110, 112, 114, 116, 118, 177, 192, 194mpfind 22030 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19620, 195eqeltrrd 2829 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
197 pf1ind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
198197elabg 3634 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
19915, 198syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
200196, 199mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3438  c0 4286  {csn 4579  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  ran crn 5624  cres 5625  ccom 5627  Oncon0 6311  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  f cof 7615  1oc1o 8388  m cmap 8760  Basecbs 17138  s cress 17159  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182  Ringcrg 20136  CRingccrg 20137   RingHom crh 20372  SubRingcsubrg 20472  AssAlgcasa 21775  algSccascl 21777   mPoly cmpl 21831   evalSub ces 21995   eval cevl 21996  Poly1cpl1 22077  eval1ce1 22217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-evls 21997  df-evl 21998  df-psr1 22080  df-ply1 22082  df-evl1 22219
This theorem is referenced by:  pl1cn  33921
  Copyright terms: Public domain W3C validator