MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1ind Structured version   Visualization version   GIF version

Theorem pf1ind 22268
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1ind.cb 𝐵 = (Base‘𝑅)
pf1ind.cp + = (+g𝑅)
pf1ind.ct · = (.r𝑅)
pf1ind.cq 𝑄 = ran (eval1𝑅)
pf1ind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
pf1ind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
pf1ind.wa (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
pf1ind.wb (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
pf1ind.wc (𝑥 = 𝑓 → (𝜓𝜏))
pf1ind.wd (𝑥 = 𝑔 → (𝜓𝜂))
pf1ind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
pf1ind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
pf1ind.wg (𝑥 = 𝐴 → (𝜓𝜌))
pf1ind.co ((𝜑𝑓𝐵) → 𝜒)
pf1ind.pr (𝜑𝜃)
pf1ind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
pf1ind (𝜑𝜌)
Distinct variable groups:   𝑓,𝑔,𝑥, +   𝐵,𝑓,𝑔,𝑥   𝜂,𝑓,𝑥   𝜑,𝑓,𝑔   𝑥,𝐴   𝜒,𝑥   𝜓,𝑓,𝑔   𝑄,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   · ,𝑓,𝑔,𝑥   𝜁,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥,𝑓,𝑔)

Proof of Theorem pf1ind
Dummy variables 𝑎 𝑏 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 6213 . . . . 5 ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
2 df1o2 8392 . . . . . . . . 9 1o = {∅}
3 pf1ind.cb . . . . . . . . . 10 𝐵 = (Base‘𝑅)
43fvexi 6836 . . . . . . . . 9 𝐵 ∈ V
5 0ex 5245 . . . . . . . . 9 ∅ ∈ V
6 eqid 2731 . . . . . . . . 9 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))
72, 4, 5, 6mapsncnv 8817 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑤𝐵 ↦ (1o × {𝑤}))
87coeq2i 5800 . . . . . . 7 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))
92, 4, 5, 6mapsnf1o2 8818 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵
10 f1ococnv2 6790 . . . . . . . 8 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
119, 10mp1i 13 . . . . . . 7 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
128, 11eqtr3id 2780 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ( I ↾ 𝐵))
1312coeq2d 5802 . . . . 5 (𝜑 → (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) = (𝐴 ∘ ( I ↾ 𝐵)))
141, 13eqtrid 2778 . . . 4 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ( I ↾ 𝐵)))
15 pf1ind.a . . . . 5 (𝜑𝐴𝑄)
16 pf1ind.cq . . . . . 6 𝑄 = ran (eval1𝑅)
1716, 3pf1f 22263 . . . . 5 (𝐴𝑄𝐴:𝐵𝐵)
18 fcoi1 6697 . . . . 5 (𝐴:𝐵𝐵 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
2014, 19eqtrd 2766 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = 𝐴)
21 pf1ind.cp . . . 4 + = (+g𝑅)
22 pf1ind.ct . . . 4 · = (.r𝑅)
23 eqid 2731 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
2423, 3evlval 22028 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
2524rneqi 5877 . . . 4 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
26 an4 656 . . . . . 6 (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) ↔ ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
27 eqid 2731 . . . . . . . . . . . 12 ran (1o eval 𝑅) = ran (1o eval 𝑅)
2816, 3, 27mpfpf1 22264 . . . . . . . . . . 11 (𝑎 ∈ ran (1o eval 𝑅) → (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
2916, 3, 27mpfpf1 22264 . . . . . . . . . . 11 (𝑏 ∈ ran (1o eval 𝑅) → (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
30 vex 3440 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
31 pf1ind.wc . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑓 → (𝜓𝜏))
3230, 31elab 3635 . . . . . . . . . . . . . . . 16 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
33 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓 ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3432, 33bitr3id 285 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜏 ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3534anbi1d 631 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝜏𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂)))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝜏𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑)))
37 ovex 7379 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
38 pf1ind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
3937, 38elab 3635 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
40 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔))
4140eleq1d 2816 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4239, 41bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜁 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4336, 42imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜁) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓})))
44 vex 3440 . . . . . . . . . . . . . . . . 17 𝑔 ∈ V
45 pf1ind.wd . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑔 → (𝜓𝜂))
4644, 45elab 3635 . . . . . . . . . . . . . . . 16 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
47 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑔 ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4846, 47bitr3id 285 . . . . . . . . . . . . . . 15 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜂 ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4948anbi2d 630 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
5049anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑)))
51 oveq2 7354 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
5251eleq1d 2816 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5350, 52imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
54 pf1ind.ad . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
5554expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜁))
5655an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜁))
5756expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜁))
5843, 53, 57vtocl2ga 3533 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5928, 29, 58syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6059expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
6160impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6225, 3mpff 22037 . . . . . . . . . . . 12 (𝑎 ∈ ran (1o eval 𝑅) → 𝑎:(𝐵m 1o)⟶𝐵)
6362ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎:(𝐵m 1o)⟶𝐵)
6463ffnd 6652 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎 Fn (𝐵m 1o))
6525, 3mpff 22037 . . . . . . . . . . . 12 (𝑏 ∈ ran (1o eval 𝑅) → 𝑏:(𝐵m 1o)⟶𝐵)
6665ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏:(𝐵m 1o)⟶𝐵)
6766ffnd 6652 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏 Fn (𝐵m 1o))
68 eqid 2731 . . . . . . . . . . . 12 (𝑤𝐵 ↦ (1o × {𝑤})) = (𝑤𝐵 ↦ (1o × {𝑤}))
692, 4, 5, 68mapsnf1o3 8819 . . . . . . . . . . 11 (𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o)
70 f1of 6763 . . . . . . . . . . 11 ((𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
7169, 70mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
72 ovexd 7381 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝐵m 1o) ∈ V)
734a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝐵 ∈ V)
74 inidm 4177 . . . . . . . . . 10 ((𝐵m 1o) ∩ (𝐵m 1o)) = (𝐵m 1o)
7564, 67, 71, 72, 72, 73, 74ofco 7635 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
7675eleq1d 2816 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
7761, 76sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7877expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7926, 78biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
8079imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
81 ovex 7379 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
82 pf1ind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
8381, 82elab 3635 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
84 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔))
8584eleq1d 2816 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8683, 85bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜎 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8736, 86imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜎) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓})))
88 oveq2 7354 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
8988eleq1d 2816 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9050, 89imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
91 pf1ind.mu . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
9291expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜎))
9392an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜎))
9493expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜎))
9587, 90, 94vtocl2ga 3533 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9628, 29, 95syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9796expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
9897impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9964, 67, 71, 72, 72, 73, 74ofco 7635 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
10099eleq1d 2816 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
10198, 100sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
102101expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
10326, 102biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
104103imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
105 coeq1 5797 . . . . 5 (𝑦 = ((𝐵m 1o) × {𝑎}) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
106105eleq1d 2816 . . . 4 (𝑦 = ((𝐵m 1o) × {𝑎}) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
107 coeq1 5797 . . . . 5 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
108107eleq1d 2816 . . . 4 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
109 coeq1 5797 . . . . 5 (𝑦 = 𝑎 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
110109eleq1d 2816 . . . 4 (𝑦 = 𝑎 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
111 coeq1 5797 . . . . 5 (𝑦 = 𝑏 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
112111eleq1d 2816 . . . 4 (𝑦 = 𝑏 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
113 coeq1 5797 . . . . 5 (𝑦 = (𝑎f + 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
114113eleq1d 2816 . . . 4 (𝑦 = (𝑎f + 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
115 coeq1 5797 . . . . 5 (𝑦 = (𝑎f · 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
116115eleq1d 2816 . . . 4 (𝑦 = (𝑎f · 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
117 coeq1 5797 . . . . 5 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
118117eleq1d 2816 . . . 4 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
11916pf1rcl 22262 . . . . . . . . 9 (𝐴𝑄𝑅 ∈ CRing)
12015, 119syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
121120adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑅 ∈ CRing)
122 1on 8397 . . . . . . . . . . . 12 1o ∈ On
123 eqid 2731 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
124123mplassa 21957 . . . . . . . . . . . 12 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o mPoly 𝑅) ∈ AssAlg)
125122, 120, 124sylancr 587 . . . . . . . . . . 11 (𝜑 → (1o mPoly 𝑅) ∈ AssAlg)
126 eqid 2731 . . . . . . . . . . . . 13 (Poly1𝑅) = (Poly1𝑅)
127 eqid 2731 . . . . . . . . . . . . 13 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
128126, 127ply1ascl 22170 . . . . . . . . . . . 12 (algSc‘(Poly1𝑅)) = (algSc‘(1o mPoly 𝑅))
129 eqid 2731 . . . . . . . . . . . 12 (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅))
130128, 129asclrhm 21825 . . . . . . . . . . 11 ((1o mPoly 𝑅) ∈ AssAlg → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
131125, 130syl 17 . . . . . . . . . 10 (𝜑 → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
132122a1i 11 . . . . . . . . . . . 12 (𝜑 → 1o ∈ On)
133123, 132, 120mplsca 21948 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘(1o mPoly 𝑅)))
134133oveq1d 7361 . . . . . . . . . 10 (𝜑 → (𝑅 RingHom (1o mPoly 𝑅)) = ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
135131, 134eleqtrrd 2834 . . . . . . . . 9 (𝜑 → (algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)))
136 eqid 2731 . . . . . . . . . 10 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
1373, 136rhmf 20400 . . . . . . . . 9 ((algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
138135, 137syl 17 . . . . . . . 8 (𝜑 → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
139138ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑎𝐵) → ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅)))
140 eqid 2731 . . . . . . . 8 (eval1𝑅) = (eval1𝑅)
141140, 23, 3, 123, 136evl1val 22242 . . . . . . 7 ((𝑅 ∈ CRing ∧ ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
142121, 139, 141syl2anc 584 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
143140, 126, 3, 127evl1sca 22247 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
144120, 143sylan 580 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
1453ressid 17152 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
146121, 145syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → (𝑅s 𝐵) = 𝑅)
147146oveq2d 7362 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
148147fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
149148, 128eqtr4di 2784 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(Poly1𝑅)))
150149fveq1d 6824 . . . . . . . . 9 ((𝜑𝑎𝐵) → ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎) = ((algSc‘(Poly1𝑅))‘𝑎))
151150fveq2d 6826 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)))
152 eqid 2731 . . . . . . . . 9 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
153 eqid 2731 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
154 eqid 2731 . . . . . . . . 9 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
155122a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐵) → 1o ∈ On)
156 crngring 20161 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1573subrgid 20486 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
158120, 156, 1573syl 18 . . . . . . . . . 10 (𝜑𝐵 ∈ (SubRing‘𝑅))
159158adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 ∈ (SubRing‘𝑅))
160 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝐵)
16124, 152, 153, 3, 154, 155, 121, 159, 160evlssca 22022 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
162151, 161eqtr3d 2768 . . . . . . 7 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
163162coeq1d 5801 . . . . . 6 ((𝜑𝑎𝐵) → (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
164142, 144, 1633eqtr3d 2774 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
165 pf1ind.co . . . . . . . 8 ((𝜑𝑓𝐵) → 𝜒)
166 vsnex 5372 . . . . . . . . . 10 {𝑓} ∈ V
1674, 166xpex 7686 . . . . . . . . 9 (𝐵 × {𝑓}) ∈ V
168 pf1ind.wa . . . . . . . . 9 (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
169167, 168elab 3635 . . . . . . . 8 ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
170165, 169sylibr 234 . . . . . . 7 ((𝜑𝑓𝐵) → (𝐵 × {𝑓}) ∈ {𝑥𝜓})
171170ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓})
172 sneq 4586 . . . . . . . . 9 (𝑓 = 𝑎 → {𝑓} = {𝑎})
173172xpeq2d 5646 . . . . . . . 8 (𝑓 = 𝑎 → (𝐵 × {𝑓}) = (𝐵 × {𝑎}))
174173eleq1d 2816 . . . . . . 7 (𝑓 = 𝑎 → ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ (𝐵 × {𝑎}) ∈ {𝑥𝜓}))
175174rspccva 3576 . . . . . 6 ((∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓} ∧ 𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
176171, 175sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
177164, 176eqeltrrd 2832 . . . 4 ((𝜑𝑎𝐵) → (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
178 pf1ind.pr . . . . . . . 8 (𝜑𝜃)
179 resiexg 7842 . . . . . . . . . 10 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
1804, 179ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐵) ∈ V
181 pf1ind.wb . . . . . . . . 9 (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
182180, 181elab 3635 . . . . . . . 8 (( I ↾ 𝐵) ∈ {𝑥𝜓} ↔ 𝜃)
183178, 182sylibr 234 . . . . . . 7 (𝜑 → ( I ↾ 𝐵) ∈ {𝑥𝜓})
18412, 183eqeltrd 2831 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
185 el1o 8410 . . . . . . . . . 10 (𝑎 ∈ 1o𝑎 = ∅)
186 fveq2 6822 . . . . . . . . . 10 (𝑎 = ∅ → (𝑏𝑎) = (𝑏‘∅))
187185, 186sylbi 217 . . . . . . . . 9 (𝑎 ∈ 1o → (𝑏𝑎) = (𝑏‘∅))
188187mpteq2dv 5185 . . . . . . . 8 (𝑎 ∈ 1o → (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)))
189188coeq1d 5801 . . . . . . 7 (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
190189eleq1d 2816 . . . . . 6 (𝑎 ∈ 1o → (((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
191184, 190syl5ibrcom 247 . . . . 5 (𝜑 → (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
192191imp 406 . . . 4 ((𝜑𝑎 ∈ 1o) → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19316, 3, 27pf1mpf 22265 . . . . 5 (𝐴𝑄 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
19415, 193syl 17 . . . 4 (𝜑 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
1953, 21, 22, 25, 80, 104, 106, 108, 110, 112, 114, 116, 118, 177, 192, 194mpfind 22040 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19620, 195eqeltrrd 2832 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
197 pf1ind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
198197elabg 3632 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
19915, 198syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
200196, 199mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  Vcvv 3436  c0 4283  {csn 4576  cmpt 5172   I cid 5510   × cxp 5614  ccnv 5615  ran crn 5617  cres 5618  ccom 5620  Oncon0 6306  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  f cof 7608  1oc1o 8378  m cmap 8750  Basecbs 17117  s cress 17138  +gcplusg 17158  .rcmulr 17159  Scalarcsca 17161  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  SubRingcsubrg 20482  AssAlgcasa 21785  algSccascl 21787   mPoly cmpl 21841   evalSub ces 22005   eval cevl 22006  Poly1cpl1 22087  eval1ce1 22227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-lmod 20793  df-lss 20863  df-lsp 20903  df-assa 21788  df-asp 21789  df-ascl 21790  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-evls 22007  df-evl 22008  df-psr1 22090  df-ply1 22092  df-evl1 22229
This theorem is referenced by:  pl1cn  33963
  Copyright terms: Public domain W3C validator