MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1ind Structured version   Visualization version   GIF version

Theorem pf1ind 22249
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1ind.cb 𝐵 = (Base‘𝑅)
pf1ind.cp + = (+g𝑅)
pf1ind.ct · = (.r𝑅)
pf1ind.cq 𝑄 = ran (eval1𝑅)
pf1ind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
pf1ind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
pf1ind.wa (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
pf1ind.wb (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
pf1ind.wc (𝑥 = 𝑓 → (𝜓𝜏))
pf1ind.wd (𝑥 = 𝑔 → (𝜓𝜂))
pf1ind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
pf1ind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
pf1ind.wg (𝑥 = 𝐴 → (𝜓𝜌))
pf1ind.co ((𝜑𝑓𝐵) → 𝜒)
pf1ind.pr (𝜑𝜃)
pf1ind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
pf1ind (𝜑𝜌)
Distinct variable groups:   𝑓,𝑔,𝑥, +   𝐵,𝑓,𝑔,𝑥   𝜂,𝑓,𝑥   𝜑,𝑓,𝑔   𝑥,𝐴   𝜒,𝑥   𝜓,𝑓,𝑔   𝑄,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   · ,𝑓,𝑔,𝑥   𝜁,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥,𝑓,𝑔)

Proof of Theorem pf1ind
Dummy variables 𝑎 𝑏 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 6241 . . . . 5 ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
2 df1o2 8444 . . . . . . . . 9 1o = {∅}
3 pf1ind.cb . . . . . . . . . 10 𝐵 = (Base‘𝑅)
43fvexi 6875 . . . . . . . . 9 𝐵 ∈ V
5 0ex 5265 . . . . . . . . 9 ∅ ∈ V
6 eqid 2730 . . . . . . . . 9 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))
72, 4, 5, 6mapsncnv 8869 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑤𝐵 ↦ (1o × {𝑤}))
87coeq2i 5827 . . . . . . 7 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))
92, 4, 5, 6mapsnf1o2 8870 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵
10 f1ococnv2 6830 . . . . . . . 8 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
119, 10mp1i 13 . . . . . . 7 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
128, 11eqtr3id 2779 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ( I ↾ 𝐵))
1312coeq2d 5829 . . . . 5 (𝜑 → (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) = (𝐴 ∘ ( I ↾ 𝐵)))
141, 13eqtrid 2777 . . . 4 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ( I ↾ 𝐵)))
15 pf1ind.a . . . . 5 (𝜑𝐴𝑄)
16 pf1ind.cq . . . . . 6 𝑄 = ran (eval1𝑅)
1716, 3pf1f 22244 . . . . 5 (𝐴𝑄𝐴:𝐵𝐵)
18 fcoi1 6737 . . . . 5 (𝐴:𝐵𝐵 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
2014, 19eqtrd 2765 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = 𝐴)
21 pf1ind.cp . . . 4 + = (+g𝑅)
22 pf1ind.ct . . . 4 · = (.r𝑅)
23 eqid 2730 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
2423, 3evlval 22009 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
2524rneqi 5904 . . . 4 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
26 an4 656 . . . . . 6 (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) ↔ ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
27 eqid 2730 . . . . . . . . . . . 12 ran (1o eval 𝑅) = ran (1o eval 𝑅)
2816, 3, 27mpfpf1 22245 . . . . . . . . . . 11 (𝑎 ∈ ran (1o eval 𝑅) → (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
2916, 3, 27mpfpf1 22245 . . . . . . . . . . 11 (𝑏 ∈ ran (1o eval 𝑅) → (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
30 vex 3454 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
31 pf1ind.wc . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑓 → (𝜓𝜏))
3230, 31elab 3649 . . . . . . . . . . . . . . . 16 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
33 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓 ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3432, 33bitr3id 285 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜏 ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3534anbi1d 631 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝜏𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂)))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝜏𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑)))
37 ovex 7423 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
38 pf1ind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
3937, 38elab 3649 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
40 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔))
4140eleq1d 2814 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4239, 41bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜁 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4336, 42imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜁) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓})))
44 vex 3454 . . . . . . . . . . . . . . . . 17 𝑔 ∈ V
45 pf1ind.wd . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑔 → (𝜓𝜂))
4644, 45elab 3649 . . . . . . . . . . . . . . . 16 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
47 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑔 ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4846, 47bitr3id 285 . . . . . . . . . . . . . . 15 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜂 ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4948anbi2d 630 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
5049anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑)))
51 oveq2 7398 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
5251eleq1d 2814 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5350, 52imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
54 pf1ind.ad . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
5554expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜁))
5655an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜁))
5756expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜁))
5843, 53, 57vtocl2ga 3547 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5928, 29, 58syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6059expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
6160impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6225, 3mpff 22018 . . . . . . . . . . . 12 (𝑎 ∈ ran (1o eval 𝑅) → 𝑎:(𝐵m 1o)⟶𝐵)
6362ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎:(𝐵m 1o)⟶𝐵)
6463ffnd 6692 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎 Fn (𝐵m 1o))
6525, 3mpff 22018 . . . . . . . . . . . 12 (𝑏 ∈ ran (1o eval 𝑅) → 𝑏:(𝐵m 1o)⟶𝐵)
6665ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏:(𝐵m 1o)⟶𝐵)
6766ffnd 6692 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏 Fn (𝐵m 1o))
68 eqid 2730 . . . . . . . . . . . 12 (𝑤𝐵 ↦ (1o × {𝑤})) = (𝑤𝐵 ↦ (1o × {𝑤}))
692, 4, 5, 68mapsnf1o3 8871 . . . . . . . . . . 11 (𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o)
70 f1of 6803 . . . . . . . . . . 11 ((𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
7169, 70mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
72 ovexd 7425 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝐵m 1o) ∈ V)
734a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝐵 ∈ V)
74 inidm 4193 . . . . . . . . . 10 ((𝐵m 1o) ∩ (𝐵m 1o)) = (𝐵m 1o)
7564, 67, 71, 72, 72, 73, 74ofco 7681 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
7675eleq1d 2814 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
7761, 76sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7877expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7926, 78biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
8079imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
81 ovex 7423 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
82 pf1ind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
8381, 82elab 3649 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
84 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔))
8584eleq1d 2814 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8683, 85bitr3id 285 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜎 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8736, 86imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜎) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓})))
88 oveq2 7398 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
8988eleq1d 2814 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9050, 89imbi12d 344 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
91 pf1ind.mu . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
9291expcom 413 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜎))
9392an4s 660 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜎))
9493expimpd 453 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜎))
9587, 90, 94vtocl2ga 3547 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9628, 29, 95syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9796expcomd 416 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
9897impcom 407 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9964, 67, 71, 72, 72, 73, 74ofco 7681 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
10099eleq1d 2814 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
10198, 100sylibrd 259 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
102101expimpd 453 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
10326, 102biimtrid 242 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
104103imp 406 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
105 coeq1 5824 . . . . 5 (𝑦 = ((𝐵m 1o) × {𝑎}) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
106105eleq1d 2814 . . . 4 (𝑦 = ((𝐵m 1o) × {𝑎}) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
107 coeq1 5824 . . . . 5 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
108107eleq1d 2814 . . . 4 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
109 coeq1 5824 . . . . 5 (𝑦 = 𝑎 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
110109eleq1d 2814 . . . 4 (𝑦 = 𝑎 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
111 coeq1 5824 . . . . 5 (𝑦 = 𝑏 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
112111eleq1d 2814 . . . 4 (𝑦 = 𝑏 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
113 coeq1 5824 . . . . 5 (𝑦 = (𝑎f + 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
114113eleq1d 2814 . . . 4 (𝑦 = (𝑎f + 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
115 coeq1 5824 . . . . 5 (𝑦 = (𝑎f · 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
116115eleq1d 2814 . . . 4 (𝑦 = (𝑎f · 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
117 coeq1 5824 . . . . 5 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
118117eleq1d 2814 . . . 4 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
11916pf1rcl 22243 . . . . . . . . 9 (𝐴𝑄𝑅 ∈ CRing)
12015, 119syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
121120adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑅 ∈ CRing)
122 1on 8449 . . . . . . . . . . . 12 1o ∈ On
123 eqid 2730 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
124123mplassa 21938 . . . . . . . . . . . 12 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o mPoly 𝑅) ∈ AssAlg)
125122, 120, 124sylancr 587 . . . . . . . . . . 11 (𝜑 → (1o mPoly 𝑅) ∈ AssAlg)
126 eqid 2730 . . . . . . . . . . . . 13 (Poly1𝑅) = (Poly1𝑅)
127 eqid 2730 . . . . . . . . . . . . 13 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
128126, 127ply1ascl 22151 . . . . . . . . . . . 12 (algSc‘(Poly1𝑅)) = (algSc‘(1o mPoly 𝑅))
129 eqid 2730 . . . . . . . . . . . 12 (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅))
130128, 129asclrhm 21806 . . . . . . . . . . 11 ((1o mPoly 𝑅) ∈ AssAlg → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
131125, 130syl 17 . . . . . . . . . 10 (𝜑 → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
132122a1i 11 . . . . . . . . . . . 12 (𝜑 → 1o ∈ On)
133123, 132, 120mplsca 21929 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘(1o mPoly 𝑅)))
134133oveq1d 7405 . . . . . . . . . 10 (𝜑 → (𝑅 RingHom (1o mPoly 𝑅)) = ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
135131, 134eleqtrrd 2832 . . . . . . . . 9 (𝜑 → (algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)))
136 eqid 2730 . . . . . . . . . 10 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
1373, 136rhmf 20401 . . . . . . . . 9 ((algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
138135, 137syl 17 . . . . . . . 8 (𝜑 → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
139138ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑎𝐵) → ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅)))
140 eqid 2730 . . . . . . . 8 (eval1𝑅) = (eval1𝑅)
141140, 23, 3, 123, 136evl1val 22223 . . . . . . 7 ((𝑅 ∈ CRing ∧ ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
142121, 139, 141syl2anc 584 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
143140, 126, 3, 127evl1sca 22228 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
144120, 143sylan 580 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
1453ressid 17221 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
146121, 145syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → (𝑅s 𝐵) = 𝑅)
147146oveq2d 7406 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
148147fveq2d 6865 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
149148, 128eqtr4di 2783 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(Poly1𝑅)))
150149fveq1d 6863 . . . . . . . . 9 ((𝜑𝑎𝐵) → ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎) = ((algSc‘(Poly1𝑅))‘𝑎))
151150fveq2d 6865 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)))
152 eqid 2730 . . . . . . . . 9 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
153 eqid 2730 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
154 eqid 2730 . . . . . . . . 9 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
155122a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐵) → 1o ∈ On)
156 crngring 20161 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1573subrgid 20489 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
158120, 156, 1573syl 18 . . . . . . . . . 10 (𝜑𝐵 ∈ (SubRing‘𝑅))
159158adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 ∈ (SubRing‘𝑅))
160 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝐵)
16124, 152, 153, 3, 154, 155, 121, 159, 160evlssca 22003 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
162151, 161eqtr3d 2767 . . . . . . 7 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
163162coeq1d 5828 . . . . . 6 ((𝜑𝑎𝐵) → (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
164142, 144, 1633eqtr3d 2773 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
165 pf1ind.co . . . . . . . 8 ((𝜑𝑓𝐵) → 𝜒)
166 vsnex 5392 . . . . . . . . . 10 {𝑓} ∈ V
1674, 166xpex 7732 . . . . . . . . 9 (𝐵 × {𝑓}) ∈ V
168 pf1ind.wa . . . . . . . . 9 (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
169167, 168elab 3649 . . . . . . . 8 ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
170165, 169sylibr 234 . . . . . . 7 ((𝜑𝑓𝐵) → (𝐵 × {𝑓}) ∈ {𝑥𝜓})
171170ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓})
172 sneq 4602 . . . . . . . . 9 (𝑓 = 𝑎 → {𝑓} = {𝑎})
173172xpeq2d 5671 . . . . . . . 8 (𝑓 = 𝑎 → (𝐵 × {𝑓}) = (𝐵 × {𝑎}))
174173eleq1d 2814 . . . . . . 7 (𝑓 = 𝑎 → ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ (𝐵 × {𝑎}) ∈ {𝑥𝜓}))
175174rspccva 3590 . . . . . 6 ((∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓} ∧ 𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
176171, 175sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
177164, 176eqeltrrd 2830 . . . 4 ((𝜑𝑎𝐵) → (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
178 pf1ind.pr . . . . . . . 8 (𝜑𝜃)
179 resiexg 7891 . . . . . . . . . 10 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
1804, 179ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐵) ∈ V
181 pf1ind.wb . . . . . . . . 9 (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
182180, 181elab 3649 . . . . . . . 8 (( I ↾ 𝐵) ∈ {𝑥𝜓} ↔ 𝜃)
183178, 182sylibr 234 . . . . . . 7 (𝜑 → ( I ↾ 𝐵) ∈ {𝑥𝜓})
18412, 183eqeltrd 2829 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
185 el1o 8462 . . . . . . . . . 10 (𝑎 ∈ 1o𝑎 = ∅)
186 fveq2 6861 . . . . . . . . . 10 (𝑎 = ∅ → (𝑏𝑎) = (𝑏‘∅))
187185, 186sylbi 217 . . . . . . . . 9 (𝑎 ∈ 1o → (𝑏𝑎) = (𝑏‘∅))
188187mpteq2dv 5204 . . . . . . . 8 (𝑎 ∈ 1o → (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)))
189188coeq1d 5828 . . . . . . 7 (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
190189eleq1d 2814 . . . . . 6 (𝑎 ∈ 1o → (((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
191184, 190syl5ibrcom 247 . . . . 5 (𝜑 → (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
192191imp 406 . . . 4 ((𝜑𝑎 ∈ 1o) → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19316, 3, 27pf1mpf 22246 . . . . 5 (𝐴𝑄 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
19415, 193syl 17 . . . 4 (𝜑 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
1953, 21, 22, 25, 80, 104, 106, 108, 110, 112, 114, 116, 118, 177, 192, 194mpfind 22021 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19620, 195eqeltrrd 2830 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
197 pf1ind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
198197elabg 3646 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
19915, 198syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
200196, 199mpbid 232 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  Vcvv 3450  c0 4299  {csn 4592  cmpt 5191   I cid 5535   × cxp 5639  ccnv 5640  ran crn 5642  cres 5643  ccom 5645  Oncon0 6335  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  f cof 7654  1oc1o 8430  m cmap 8802  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  SubRingcsubrg 20485  AssAlgcasa 21766  algSccascl 21768   mPoly cmpl 21822   evalSub ces 21986   eval cevl 21987  Poly1cpl1 22068  eval1ce1 22208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-ply1 22073  df-evl1 22210
This theorem is referenced by:  pl1cn  33952
  Copyright terms: Public domain W3C validator