MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1ind Structured version   Visualization version   GIF version

Theorem pf1ind 20518
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1ind.cb 𝐵 = (Base‘𝑅)
pf1ind.cp + = (+g𝑅)
pf1ind.ct · = (.r𝑅)
pf1ind.cq 𝑄 = ran (eval1𝑅)
pf1ind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
pf1ind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
pf1ind.wa (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
pf1ind.wb (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
pf1ind.wc (𝑥 = 𝑓 → (𝜓𝜏))
pf1ind.wd (𝑥 = 𝑔 → (𝜓𝜂))
pf1ind.we (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
pf1ind.wf (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
pf1ind.wg (𝑥 = 𝐴 → (𝜓𝜌))
pf1ind.co ((𝜑𝑓𝐵) → 𝜒)
pf1ind.pr (𝜑𝜃)
pf1ind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
pf1ind (𝜑𝜌)
Distinct variable groups:   𝑓,𝑔,𝑥, +   𝐵,𝑓,𝑔,𝑥   𝜂,𝑓,𝑥   𝜑,𝑓,𝑔   𝑥,𝐴   𝜒,𝑥   𝜓,𝑓,𝑔   𝑄,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   · ,𝑓,𝑔,𝑥   𝜁,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥,𝑓,𝑔)

Proof of Theorem pf1ind
Dummy variables 𝑎 𝑏 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 6118 . . . . 5 ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
2 df1o2 8116 . . . . . . . . 9 1o = {∅}
3 pf1ind.cb . . . . . . . . . 10 𝐵 = (Base‘𝑅)
43fvexi 6684 . . . . . . . . 9 𝐵 ∈ V
5 0ex 5211 . . . . . . . . 9 ∅ ∈ V
6 eqid 2821 . . . . . . . . 9 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))
72, 4, 5, 6mapsncnv 8457 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) = (𝑤𝐵 ↦ (1o × {𝑤}))
87coeq2i 5731 . . . . . . 7 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))
92, 4, 5, 6mapsnf1o2 8458 . . . . . . . 8 (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵
10 f1ococnv2 6641 . . . . . . . 8 ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
119, 10mp1i 13 . . . . . . 7 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
128, 11syl5eqr 2870 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ( I ↾ 𝐵))
1312coeq2d 5733 . . . . 5 (𝜑 → (𝐴 ∘ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) = (𝐴 ∘ ( I ↾ 𝐵)))
141, 13syl5eq 2868 . . . 4 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝐴 ∘ ( I ↾ 𝐵)))
15 pf1ind.a . . . . 5 (𝜑𝐴𝑄)
16 pf1ind.cq . . . . . 6 𝑄 = ran (eval1𝑅)
1716, 3pf1f 20513 . . . . 5 (𝐴𝑄𝐴:𝐵𝐵)
18 fcoi1 6552 . . . . 5 (𝐴:𝐵𝐵 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
1915, 17, 183syl 18 . . . 4 (𝜑 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
2014, 19eqtrd 2856 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = 𝐴)
21 pf1ind.cp . . . 4 + = (+g𝑅)
22 pf1ind.ct . . . 4 · = (.r𝑅)
23 eqid 2821 . . . . . 6 (1o eval 𝑅) = (1o eval 𝑅)
2423, 3evlval 20308 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
2524rneqi 5807 . . . 4 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
26 an4 654 . . . . . 6 (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) ↔ ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
27 eqid 2821 . . . . . . . . . . . 12 ran (1o eval 𝑅) = ran (1o eval 𝑅)
2816, 3, 27mpfpf1 20514 . . . . . . . . . . 11 (𝑎 ∈ ran (1o eval 𝑅) → (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
2916, 3, 27mpfpf1 20514 . . . . . . . . . . 11 (𝑏 ∈ ran (1o eval 𝑅) → (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄)
30 vex 3497 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
31 pf1ind.wc . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑓 → (𝜓𝜏))
3230, 31elab 3667 . . . . . . . . . . . . . . . 16 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
33 eleq1 2900 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓 ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3432, 33syl5bbr 287 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜏 ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
3534anbi1d 631 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝜏𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂)))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝜏𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑)))
37 ovex 7189 . . . . . . . . . . . . . . 15 (𝑓f + 𝑔) ∈ V
38 pf1ind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f + 𝑔) → (𝜓𝜁))
3937, 38elab 3667 . . . . . . . . . . . . . 14 ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
40 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔))
4140eleq1d 2897 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4239, 41syl5bbr 287 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜁 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}))
4336, 42imbi12d 347 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜁) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓})))
44 vex 3497 . . . . . . . . . . . . . . . . 17 𝑔 ∈ V
45 pf1ind.wd . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑔 → (𝜓𝜂))
4644, 45elab 3667 . . . . . . . . . . . . . . . 16 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
47 eleq1 2900 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑔 ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4846, 47syl5bbr 287 . . . . . . . . . . . . . . 15 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜂 ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
4948anbi2d 630 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})))
5049anbi1d 631 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑)))
51 oveq2 7164 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
5251eleq1d 2897 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5350, 52imbi12d 347 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
54 pf1ind.ad . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
5554expcom 416 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜁))
5655an4s 658 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜁))
5756expimpd 456 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜁))
5843, 53, 57vtocl2ga 3575 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
5928, 29, 58syl2an 597 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6059expcomd 419 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
6160impcom 410 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
6225, 3mpff 20317 . . . . . . . . . . . 12 (𝑎 ∈ ran (1o eval 𝑅) → 𝑎:(𝐵m 1o)⟶𝐵)
6362ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎:(𝐵m 1o)⟶𝐵)
6463ffnd 6515 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑎 Fn (𝐵m 1o))
6525, 3mpff 20317 . . . . . . . . . . . 12 (𝑏 ∈ ran (1o eval 𝑅) → 𝑏:(𝐵m 1o)⟶𝐵)
6665ad2antll 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏:(𝐵m 1o)⟶𝐵)
6766ffnd 6515 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝑏 Fn (𝐵m 1o))
68 eqid 2821 . . . . . . . . . . . 12 (𝑤𝐵 ↦ (1o × {𝑤})) = (𝑤𝐵 ↦ (1o × {𝑤}))
692, 4, 5, 68mapsnf1o3 8459 . . . . . . . . . . 11 (𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o)
70 f1of 6615 . . . . . . . . . . 11 ((𝑤𝐵 ↦ (1o × {𝑤})):𝐵1-1-onto→(𝐵m 1o) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
7169, 70mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝑤𝐵 ↦ (1o × {𝑤})):𝐵⟶(𝐵m 1o))
72 ovexd 7191 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (𝐵m 1o) ∈ V)
734a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → 𝐵 ∈ V)
74 inidm 4195 . . . . . . . . . 10 ((𝐵m 1o) ∩ (𝐵m 1o)) = (𝐵m 1o)
7564, 67, 71, 72, 72, 73, 74ofco 7429 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
7675eleq1d 2897 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f + (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
7761, 76sylibrd 261 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7877expimpd 456 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
7926, 78syl5bi 244 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
8079imp 409 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
81 ovex 7189 . . . . . . . . . . . . . . 15 (𝑓f · 𝑔) ∈ V
82 pf1ind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓f · 𝑔) → (𝜓𝜎))
8381, 82elab 3667 . . . . . . . . . . . . . 14 ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
84 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝑓f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔))
8584eleq1d 2897 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑓f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8683, 85syl5bbr 287 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (𝜎 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}))
8736, 86imbi12d 347 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜎) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓})))
88 oveq2 7164 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
8988eleq1d 2897 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9050, 89imbi12d 347 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
91 pf1ind.mu . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
9291expcom 416 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜎))
9392an4s 658 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜎))
9493expimpd 456 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜎))
9587, 90, 94vtocl2ga 3575 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9628, 29, 95syl2an 597 . . . . . . . . . 10 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9796expcomd 419 . . . . . . . . 9 ((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓})))
9897impcom 410 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
9964, 67, 71, 72, 72, 73, 74ofco 7429 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))))
10099eleq1d 2897 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∘f · (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤})))) ∈ {𝑥𝜓}))
10198, 100sylibrd 261 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
102101expimpd 456 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ 𝑏 ∈ ran (1o eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
10326, 102syl5bi 244 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
104103imp 409 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1o eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1o eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
105 coeq1 5728 . . . . 5 (𝑦 = ((𝐵m 1o) × {𝑎}) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
106105eleq1d 2897 . . . 4 (𝑦 = ((𝐵m 1o) × {𝑎}) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
107 coeq1 5728 . . . . 5 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
108107eleq1d 2897 . . . 4 (𝑦 = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
109 coeq1 5728 . . . . 5 (𝑦 = 𝑎 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
110109eleq1d 2897 . . . 4 (𝑦 = 𝑎 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
111 coeq1 5728 . . . . 5 (𝑦 = 𝑏 → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
112111eleq1d 2897 . . . 4 (𝑦 = 𝑏 → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
113 coeq1 5728 . . . . 5 (𝑦 = (𝑎f + 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
114113eleq1d 2897 . . . 4 (𝑦 = (𝑎f + 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f + 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
115 coeq1 5728 . . . . 5 (𝑦 = (𝑎f · 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
116115eleq1d 2897 . . . 4 (𝑦 = (𝑎f · 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎f · 𝑏) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
117 coeq1 5728 . . . . 5 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → (𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
118117eleq1d 2897 . . . 4 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) → ((𝑦 ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
11916pf1rcl 20512 . . . . . . . . 9 (𝐴𝑄𝑅 ∈ CRing)
12015, 119syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
121120adantr 483 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑅 ∈ CRing)
122 1on 8109 . . . . . . . . . . . 12 1o ∈ On
123 eqid 2821 . . . . . . . . . . . . 13 (1o mPoly 𝑅) = (1o mPoly 𝑅)
124123mplassa 20235 . . . . . . . . . . . 12 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o mPoly 𝑅) ∈ AssAlg)
125122, 120, 124sylancr 589 . . . . . . . . . . 11 (𝜑 → (1o mPoly 𝑅) ∈ AssAlg)
126 eqid 2821 . . . . . . . . . . . . 13 (Poly1𝑅) = (Poly1𝑅)
127 eqid 2821 . . . . . . . . . . . . 13 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
128126, 127ply1ascl 20426 . . . . . . . . . . . 12 (algSc‘(Poly1𝑅)) = (algSc‘(1o mPoly 𝑅))
129 eqid 2821 . . . . . . . . . . . 12 (Scalar‘(1o mPoly 𝑅)) = (Scalar‘(1o mPoly 𝑅))
130128, 129asclrhm 20119 . . . . . . . . . . 11 ((1o mPoly 𝑅) ∈ AssAlg → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
131125, 130syl 17 . . . . . . . . . 10 (𝜑 → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
132122a1i 11 . . . . . . . . . . . 12 (𝜑 → 1o ∈ On)
133123, 132, 120mplsca 20225 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘(1o mPoly 𝑅)))
134133oveq1d 7171 . . . . . . . . . 10 (𝜑 → (𝑅 RingHom (1o mPoly 𝑅)) = ((Scalar‘(1o mPoly 𝑅)) RingHom (1o mPoly 𝑅)))
135131, 134eleqtrrd 2916 . . . . . . . . 9 (𝜑 → (algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)))
136 eqid 2821 . . . . . . . . . 10 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
1373, 136rhmf 19478 . . . . . . . . 9 ((algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1o mPoly 𝑅)) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
138135, 137syl 17 . . . . . . . 8 (𝜑 → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1o mPoly 𝑅)))
139138ffvelrnda 6851 . . . . . . 7 ((𝜑𝑎𝐵) → ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅)))
140 eqid 2821 . . . . . . . 8 (eval1𝑅) = (eval1𝑅)
141140, 23, 3, 123, 136evl1val 20492 . . . . . . 7 ((𝑅 ∈ CRing ∧ ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1o mPoly 𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
142121, 139, 141syl2anc 586 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
143140, 126, 3, 127evl1sca 20497 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
144120, 143sylan 582 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
1453ressid 16559 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
146121, 145syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → (𝑅s 𝐵) = 𝑅)
147146oveq2d 7172 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (1o mPoly (𝑅s 𝐵)) = (1o mPoly 𝑅))
148147fveq2d 6674 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly 𝑅)))
149148, 128syl6eqr 2874 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(Poly1𝑅)))
150149fveq1d 6672 . . . . . . . . 9 ((𝜑𝑎𝐵) → ((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎) = ((algSc‘(Poly1𝑅))‘𝑎))
151150fveq2d 6674 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)))
152 eqid 2821 . . . . . . . . 9 (1o mPoly (𝑅s 𝐵)) = (1o mPoly (𝑅s 𝐵))
153 eqid 2821 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
154 eqid 2821 . . . . . . . . 9 (algSc‘(1o mPoly (𝑅s 𝐵))) = (algSc‘(1o mPoly (𝑅s 𝐵)))
155122a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐵) → 1o ∈ On)
156 crngring 19308 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1573subrgid 19537 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
158120, 156, 1573syl 18 . . . . . . . . . 10 (𝜑𝐵 ∈ (SubRing‘𝑅))
159158adantr 483 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 ∈ (SubRing‘𝑅))
160 simpr 487 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝐵)
16124, 152, 153, 3, 154, 155, 121, 159, 160evlssca 20302 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(1o mPoly (𝑅s 𝐵)))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
162151, 161eqtr3d 2858 . . . . . . 7 ((𝜑𝑎𝐵) → ((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = ((𝐵m 1o) × {𝑎}))
163162coeq1d 5732 . . . . . 6 ((𝜑𝑎𝐵) → (((1o eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
164142, 144, 1633eqtr3d 2864 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) = (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
165 pf1ind.co . . . . . . . 8 ((𝜑𝑓𝐵) → 𝜒)
166 snex 5332 . . . . . . . . . 10 {𝑓} ∈ V
1674, 166xpex 7476 . . . . . . . . 9 (𝐵 × {𝑓}) ∈ V
168 pf1ind.wa . . . . . . . . 9 (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
169167, 168elab 3667 . . . . . . . 8 ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
170165, 169sylibr 236 . . . . . . 7 ((𝜑𝑓𝐵) → (𝐵 × {𝑓}) ∈ {𝑥𝜓})
171170ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓})
172 sneq 4577 . . . . . . . . 9 (𝑓 = 𝑎 → {𝑓} = {𝑎})
173172xpeq2d 5585 . . . . . . . 8 (𝑓 = 𝑎 → (𝐵 × {𝑓}) = (𝐵 × {𝑎}))
174173eleq1d 2897 . . . . . . 7 (𝑓 = 𝑎 → ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ (𝐵 × {𝑎}) ∈ {𝑥𝜓}))
175174rspccva 3622 . . . . . 6 ((∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓} ∧ 𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
176171, 175sylan 582 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
177164, 176eqeltrrd 2914 . . . 4 ((𝜑𝑎𝐵) → (((𝐵m 1o) × {𝑎}) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
178 pf1ind.pr . . . . . . . 8 (𝜑𝜃)
179 resiexg 7619 . . . . . . . . . 10 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
1804, 179ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐵) ∈ V
181 pf1ind.wb . . . . . . . . 9 (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
182180, 181elab 3667 . . . . . . . 8 (( I ↾ 𝐵) ∈ {𝑥𝜓} ↔ 𝜃)
183178, 182sylibr 236 . . . . . . 7 (𝜑 → ( I ↾ 𝐵) ∈ {𝑥𝜓})
18412, 183eqeltrd 2913 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
185 el1o 8124 . . . . . . . . . 10 (𝑎 ∈ 1o𝑎 = ∅)
186 fveq2 6670 . . . . . . . . . 10 (𝑎 = ∅ → (𝑏𝑎) = (𝑏‘∅))
187185, 186sylbi 219 . . . . . . . . 9 (𝑎 ∈ 1o → (𝑏𝑎) = (𝑏‘∅))
188187mpteq2dv 5162 . . . . . . . 8 (𝑎 ∈ 1o → (𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) = (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)))
189188coeq1d 5732 . . . . . . 7 (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) = ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))))
190189eleq1d 2897 . . . . . 6 (𝑎 ∈ 1o → (((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
191184, 190syl5ibrcom 249 . . . . 5 (𝜑 → (𝑎 ∈ 1o → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓}))
192191imp 409 . . . 4 ((𝜑𝑎 ∈ 1o) → ((𝑏 ∈ (𝐵m 1o) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19316, 3, 27pf1mpf 20515 . . . . 5 (𝐴𝑄 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
19415, 193syl 17 . . . 4 (𝜑 → (𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∈ ran (1o eval 𝑅))
1953, 21, 22, 25, 80, 104, 106, 108, 110, 112, 114, 116, 118, 177, 192, 194mpfind 20320 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵m 1o) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1o × {𝑤}))) ∈ {𝑥𝜓})
19620, 195eqeltrrd 2914 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
197 pf1ind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
198197elabg 3666 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
19915, 198syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
200196, 199mpbid 234 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2799  wral 3138  Vcvv 3494  c0 4291  {csn 4567  cmpt 5146   I cid 5459   × cxp 5553  ccnv 5554  ran crn 5556  cres 5557  ccom 5559  Oncon0 6191  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  f cof 7407  1oc1o 8095  m cmap 8406  Basecbs 16483  s cress 16484  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568  Ringcrg 19297  CRingccrg 19298   RingHom crh 19464  SubRingcsubrg 19531  AssAlgcasa 20082  algSccascl 20084   mPoly cmpl 20133   evalSub ces 20284   eval cevl 20285  Poly1cpl1 20345  eval1ce1 20477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-evls 20286  df-evl 20287  df-psr1 20348  df-ply1 20350  df-evl1 20479
This theorem is referenced by:  pl1cn  31198
  Copyright terms: Public domain W3C validator