MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasleval Structured version   Visualization version   GIF version

Theorem imasleval 16561
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasless.u (𝜑𝑈 = (𝐹s 𝑅))
imasless.v (𝜑𝑉 = (Base‘𝑅))
imasless.f (𝜑𝐹:𝑉onto𝐵)
imasless.r (𝜑𝑅𝑍)
imasless.l = (le‘𝑈)
imasleval.n 𝑁 = (le‘𝑅)
imasleval.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
Assertion
Ref Expression
imasleval ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Distinct variable groups:   𝑐,𝑑,   𝑎,𝑏,𝑐,𝑑,𝐹   𝑁,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑   𝑌,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑   𝑋,𝑐,𝑑
Allowed substitution hints:   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑈(𝑎,𝑏,𝑐,𝑑)   (𝑎,𝑏)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏,𝑐)   𝑍(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem imasleval
StepHypRef Expression
1 fveq2 6437 . . . . . . 7 (𝑐 = 𝑋 → (𝐹𝑐) = (𝐹𝑋))
21breq1d 4885 . . . . . 6 (𝑐 = 𝑋 → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑑)))
3 breq1 4878 . . . . . 6 (𝑐 = 𝑋 → (𝑐𝑁𝑑𝑋𝑁𝑑))
42, 3bibi12d 337 . . . . 5 (𝑐 = 𝑋 → (((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)))
54imbi2d 332 . . . 4 (𝑐 = 𝑋 → ((𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑))))
6 fveq2 6437 . . . . . . 7 (𝑑 = 𝑌 → (𝐹𝑑) = (𝐹𝑌))
76breq2d 4887 . . . . . 6 (𝑑 = 𝑌 → ((𝐹𝑋) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑌)))
8 breq2 4879 . . . . . 6 (𝑑 = 𝑌 → (𝑋𝑁𝑑𝑋𝑁𝑌))
97, 8bibi12d 337 . . . . 5 (𝑑 = 𝑌 → (((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
109imbi2d 332 . . . 4 (𝑑 = 𝑌 → ((𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))))
11 imasless.f . . . . . . . . . . . 12 (𝜑𝐹:𝑉onto𝐵)
12 fofn 6359 . . . . . . . . . . . 12 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑉)
1413adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝐹 Fn 𝑉)
15 fndm 6227 . . . . . . . . . 10 (𝐹 Fn 𝑉 → dom 𝐹 = 𝑉)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → dom 𝐹 = 𝑉)
1716rexeqdv 3357 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
18 fnbrfvb 6486 . . . . . . . . . . . 12 ((𝐹 Fn 𝑉𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1914, 18sylan 575 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
2019anbi1d 623 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
21 ancom 454 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
22 vex 3417 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ V
23 fvex 6450 . . . . . . . . . . . . . . . . . 18 (𝐹𝑑) ∈ V
2422, 23breldm 5565 . . . . . . . . . . . . . . . . 17 (𝑏𝐹(𝐹𝑑) → 𝑏 ∈ dom 𝐹)
2524adantr 474 . . . . . . . . . . . . . . . 16 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) → 𝑏 ∈ dom 𝐹)
2625pm4.71ri 556 . . . . . . . . . . . . . . 15 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2721, 26bitri 267 . . . . . . . . . . . . . 14 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2827exbii 1947 . . . . . . . . . . . . 13 (∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
29 vex 3417 . . . . . . . . . . . . . 14 𝑎 ∈ V
3029, 23brco 5529 . . . . . . . . . . . . 13 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)))
31 df-rex 3123 . . . . . . . . . . . . 13 (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
3228, 30, 313bitr4i 295 . . . . . . . . . . . 12 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
3314ad2antrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → 𝐹 Fn 𝑉)
34 fnbrfvb 6486 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑉𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3533, 34sylan 575 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3635anbi1d 623 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
37 imasleval.e . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
38373expa 1151 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3938an32s 642 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
4039anassrs 461 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
4140impl 449 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑))
4241pm5.32da 574 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4342an32s 642 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4436, 43bitr3d 273 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4544rexbidva 3259 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
46 r19.41v 3299 . . . . . . . . . . . . . 14 (∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑))
4745, 46syl6bb 279 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4816rexeqdv 3357 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
4948ad2antrr 717 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
50 simprr 789 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑑𝑉)
51 eqid 2825 . . . . . . . . . . . . . . . 16 (𝐹𝑑) = (𝐹𝑑)
52 fveqeq2 6446 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑑 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑑) = (𝐹𝑑)))
5352rspcev 3526 . . . . . . . . . . . . . . . 16 ((𝑑𝑉 ∧ (𝐹𝑑) = (𝐹𝑑)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5450, 51, 53sylancl 580 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5554biantrurd 528 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5655ad2antrr 717 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5747, 49, 563bitr4d 303 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ 𝑐𝑁𝑑))
5832, 57syl5bb 275 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑎(𝐹𝑁)(𝐹𝑑) ↔ 𝑐𝑁𝑑))
5958pm5.32da 574 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6020, 59bitr3d 273 . . . . . . . . 9 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6160rexbidva 3259 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6217, 61bitrd 271 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
63 fvex 6450 . . . . . . . . . . . 12 (𝐹𝑐) ∈ V
6463, 29brcnv 5541 . . . . . . . . . . 11 ((𝐹𝑐)𝐹𝑎𝑎𝐹(𝐹𝑐))
6564anbi1i 617 . . . . . . . . . 10 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)))
6629, 63breldm 5565 . . . . . . . . . . . 12 (𝑎𝐹(𝐹𝑐) → 𝑎 ∈ dom 𝐹)
6766adantr 474 . . . . . . . . . . 11 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) → 𝑎 ∈ dom 𝐹)
6867pm4.71ri 556 . . . . . . . . . 10 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6965, 68bitri 267 . . . . . . . . 9 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7069exbii 1947 . . . . . . . 8 (∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7163, 23brco 5529 . . . . . . . 8 ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ ∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)))
72 df-rex 3123 . . . . . . . 8 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7370, 71, 723bitr4ri 296 . . . . . . 7 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑))
74 r19.41v 3299 . . . . . . 7 (∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑))
7562, 73, 743bitr3g 305 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
76 imasless.u . . . . . . . . 9 (𝜑𝑈 = (𝐹s 𝑅))
77 imasless.v . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑅))
78 imasless.r . . . . . . . . 9 (𝜑𝑅𝑍)
79 imasleval.n . . . . . . . . 9 𝑁 = (le‘𝑅)
80 imasless.l . . . . . . . . 9 = (le‘𝑈)
8176, 77, 11, 78, 79, 80imasle 16543 . . . . . . . 8 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
8281adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → = ((𝐹𝑁) ∘ 𝐹))
8382breqd 4886 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑)))
84 simprl 787 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑐𝑉)
85 eqid 2825 . . . . . . . 8 (𝐹𝑐) = (𝐹𝑐)
86 fveqeq2 6446 . . . . . . . . 9 (𝑎 = 𝑐 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑐) = (𝐹𝑐)))
8786rspcev 3526 . . . . . . . 8 ((𝑐𝑉 ∧ (𝐹𝑐) = (𝐹𝑐)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8884, 85, 87sylancl 580 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8988biantrurd 528 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
9075, 83, 893bitr4d 303 . . . . 5 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑))
9190expcom 404 . . . 4 ((𝑐𝑉𝑑𝑉) → (𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)))
925, 10, 91vtocl2ga 3491 . . 3 ((𝑋𝑉𝑌𝑉) → (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
9392com12 32 . 2 (𝜑 → ((𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
94933impib 1148 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wex 1878  wcel 2164  wrex 3118   class class class wbr 4875  ccnv 5345  dom cdm 5346  ccom 5350   Fn wfn 6122  ontowfo 6125  cfv 6127  (class class class)co 6910  Basecbs 16229  lecple 16319  s cimas 16524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-imas 16528
This theorem is referenced by:  xpsle  16601
  Copyright terms: Public domain W3C validator