MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasleval Structured version   Visualization version   GIF version

Theorem imasleval 17252
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasless.u (𝜑𝑈 = (𝐹s 𝑅))
imasless.v (𝜑𝑉 = (Base‘𝑅))
imasless.f (𝜑𝐹:𝑉onto𝐵)
imasless.r (𝜑𝑅𝑍)
imasless.l = (le‘𝑈)
imasleval.n 𝑁 = (le‘𝑅)
imasleval.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
Assertion
Ref Expression
imasleval ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Distinct variable groups:   𝑐,𝑑,   𝑎,𝑏,𝑐,𝑑,𝐹   𝑁,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑   𝑌,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑   𝑋,𝑐,𝑑
Allowed substitution hints:   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑈(𝑎,𝑏,𝑐,𝑑)   (𝑎,𝑏)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏,𝑐)   𝑍(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem imasleval
StepHypRef Expression
1 fveq2 6774 . . . . . . 7 (𝑐 = 𝑋 → (𝐹𝑐) = (𝐹𝑋))
21breq1d 5084 . . . . . 6 (𝑐 = 𝑋 → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑑)))
3 breq1 5077 . . . . . 6 (𝑐 = 𝑋 → (𝑐𝑁𝑑𝑋𝑁𝑑))
42, 3bibi12d 346 . . . . 5 (𝑐 = 𝑋 → (((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)))
54imbi2d 341 . . . 4 (𝑐 = 𝑋 → ((𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑))))
6 fveq2 6774 . . . . . . 7 (𝑑 = 𝑌 → (𝐹𝑑) = (𝐹𝑌))
76breq2d 5086 . . . . . 6 (𝑑 = 𝑌 → ((𝐹𝑋) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑌)))
8 breq2 5078 . . . . . 6 (𝑑 = 𝑌 → (𝑋𝑁𝑑𝑋𝑁𝑌))
97, 8bibi12d 346 . . . . 5 (𝑑 = 𝑌 → (((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
109imbi2d 341 . . . 4 (𝑑 = 𝑌 → ((𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))))
11 imasless.f . . . . . . . . . . . 12 (𝜑𝐹:𝑉onto𝐵)
12 fofn 6690 . . . . . . . . . . . 12 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑉)
1413adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝐹 Fn 𝑉)
1514fndmd 6538 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → dom 𝐹 = 𝑉)
1615rexeqdv 3349 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
17 fnbrfvb 6822 . . . . . . . . . . . 12 ((𝐹 Fn 𝑉𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1814, 17sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1918anbi1d 630 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
20 ancom 461 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
21 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ V
22 fvex 6787 . . . . . . . . . . . . . . . . . 18 (𝐹𝑑) ∈ V
2321, 22breldm 5817 . . . . . . . . . . . . . . . . 17 (𝑏𝐹(𝐹𝑑) → 𝑏 ∈ dom 𝐹)
2423adantr 481 . . . . . . . . . . . . . . . 16 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) → 𝑏 ∈ dom 𝐹)
2524pm4.71ri 561 . . . . . . . . . . . . . . 15 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2620, 25bitri 274 . . . . . . . . . . . . . 14 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2726exbii 1850 . . . . . . . . . . . . 13 (∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
28 vex 3436 . . . . . . . . . . . . . 14 𝑎 ∈ V
2928, 22brco 5779 . . . . . . . . . . . . 13 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)))
30 df-rex 3070 . . . . . . . . . . . . 13 (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
3127, 29, 303bitr4i 303 . . . . . . . . . . . 12 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
3214ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → 𝐹 Fn 𝑉)
33 fnbrfvb 6822 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑉𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3432, 33sylan 580 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3534anbi1d 630 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
36 imasleval.e . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
37363expa 1117 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3837an32s 649 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3938anassrs 468 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
4039impl 456 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑))
4140pm5.32da 579 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4241an32s 649 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4335, 42bitr3d 280 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4443rexbidva 3225 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
45 r19.41v 3276 . . . . . . . . . . . . . 14 (∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑))
4644, 45bitrdi 287 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4715rexeqdv 3349 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
4847ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
49 simprr 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑑𝑉)
50 eqid 2738 . . . . . . . . . . . . . . . 16 (𝐹𝑑) = (𝐹𝑑)
51 fveqeq2 6783 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑑 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑑) = (𝐹𝑑)))
5251rspcev 3561 . . . . . . . . . . . . . . . 16 ((𝑑𝑉 ∧ (𝐹𝑑) = (𝐹𝑑)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5349, 50, 52sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5453biantrurd 533 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5554ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5646, 48, 553bitr4d 311 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ 𝑐𝑁𝑑))
5731, 56bitrid 282 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑎(𝐹𝑁)(𝐹𝑑) ↔ 𝑐𝑁𝑑))
5857pm5.32da 579 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
5919, 58bitr3d 280 . . . . . . . . 9 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6059rexbidva 3225 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6116, 60bitrd 278 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
62 fvex 6787 . . . . . . . . . . . 12 (𝐹𝑐) ∈ V
6362, 28brcnv 5791 . . . . . . . . . . 11 ((𝐹𝑐)𝐹𝑎𝑎𝐹(𝐹𝑐))
6463anbi1i 624 . . . . . . . . . 10 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)))
6528, 62breldm 5817 . . . . . . . . . . . 12 (𝑎𝐹(𝐹𝑐) → 𝑎 ∈ dom 𝐹)
6665adantr 481 . . . . . . . . . . 11 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) → 𝑎 ∈ dom 𝐹)
6766pm4.71ri 561 . . . . . . . . . 10 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6864, 67bitri 274 . . . . . . . . 9 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6968exbii 1850 . . . . . . . 8 (∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7062, 22brco 5779 . . . . . . . 8 ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ ∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)))
71 df-rex 3070 . . . . . . . 8 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7269, 70, 713bitr4ri 304 . . . . . . 7 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑))
73 r19.41v 3276 . . . . . . 7 (∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑))
7461, 72, 733bitr3g 313 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
75 imasless.u . . . . . . . . 9 (𝜑𝑈 = (𝐹s 𝑅))
76 imasless.v . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑅))
77 imasless.r . . . . . . . . 9 (𝜑𝑅𝑍)
78 imasleval.n . . . . . . . . 9 𝑁 = (le‘𝑅)
79 imasless.l . . . . . . . . 9 = (le‘𝑈)
8075, 76, 11, 77, 78, 79imasle 17234 . . . . . . . 8 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
8180adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → = ((𝐹𝑁) ∘ 𝐹))
8281breqd 5085 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑)))
83 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑐𝑉)
84 eqid 2738 . . . . . . . 8 (𝐹𝑐) = (𝐹𝑐)
85 fveqeq2 6783 . . . . . . . . 9 (𝑎 = 𝑐 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑐) = (𝐹𝑐)))
8685rspcev 3561 . . . . . . . 8 ((𝑐𝑉 ∧ (𝐹𝑐) = (𝐹𝑐)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8783, 84, 86sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8887biantrurd 533 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
8974, 82, 883bitr4d 311 . . . . 5 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑))
9089expcom 414 . . . 4 ((𝑐𝑉𝑑𝑉) → (𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)))
915, 10, 90vtocl2ga 3514 . . 3 ((𝑋𝑉𝑌𝑉) → (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
9291com12 32 . 2 (𝜑 → ((𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
93923impib 1115 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wrex 3065   class class class wbr 5074  ccnv 5588  dom cdm 5589  ccom 5593   Fn wfn 6428  ontowfo 6431  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  s cimas 17215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-imas 17219
This theorem is referenced by:  xpsle  17290
  Copyright terms: Public domain W3C validator