Proof of Theorem imasleval
Step | Hyp | Ref
| Expression |
1 | | fveq2 6766 |
. . . . . . 7
⊢ (𝑐 = 𝑋 → (𝐹‘𝑐) = (𝐹‘𝑋)) |
2 | 1 | breq1d 5083 |
. . . . . 6
⊢ (𝑐 = 𝑋 → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑑))) |
3 | | breq1 5076 |
. . . . . 6
⊢ (𝑐 = 𝑋 → (𝑐𝑁𝑑 ↔ 𝑋𝑁𝑑)) |
4 | 2, 3 | bibi12d 346 |
. . . . 5
⊢ (𝑐 = 𝑋 → (((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑) ↔ ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑))) |
5 | 4 | imbi2d 341 |
. . . 4
⊢ (𝑐 = 𝑋 → ((𝜑 → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑)) ↔ (𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑)))) |
6 | | fveq2 6766 |
. . . . . . 7
⊢ (𝑑 = 𝑌 → (𝐹‘𝑑) = (𝐹‘𝑌)) |
7 | 6 | breq2d 5085 |
. . . . . 6
⊢ (𝑑 = 𝑌 → ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
8 | | breq2 5077 |
. . . . . 6
⊢ (𝑑 = 𝑌 → (𝑋𝑁𝑑 ↔ 𝑋𝑁𝑌)) |
9 | 7, 8 | bibi12d 346 |
. . . . 5
⊢ (𝑑 = 𝑌 → (((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑) ↔ ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌))) |
10 | 9 | imbi2d 341 |
. . . 4
⊢ (𝑑 = 𝑌 → ((𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑)) ↔ (𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌)))) |
11 | | imasless.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
12 | | fofn 6682 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝑉) |
14 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → 𝐹 Fn 𝑉) |
15 | 14 | fndmd 6530 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → dom 𝐹 = 𝑉) |
16 | 15 | rexeqdv 3347 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎 ∈ 𝑉 (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
17 | | fnbrfvb 6814 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝑉 ∧ 𝑎 ∈ 𝑉) → ((𝐹‘𝑎) = (𝐹‘𝑐) ↔ 𝑎𝐹(𝐹‘𝑐))) |
18 | 14, 17 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → ((𝐹‘𝑎) = (𝐹‘𝑐) ↔ 𝑎𝐹(𝐹‘𝑐))) |
19 | 18 | anbi1d 630 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
20 | | ancom 461 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑)) ↔ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏)) |
21 | | vex 3433 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V |
22 | | fvex 6779 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘𝑑) ∈ V |
23 | 21, 22 | breldm 5810 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏𝐹(𝐹‘𝑑) → 𝑏 ∈ dom 𝐹) |
24 | 23 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) → 𝑏 ∈ dom 𝐹) |
25 | 24 | pm4.71ri 561 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
26 | 20, 25 | bitri 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑)) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
27 | 26 | exbii 1850 |
. . . . . . . . . . . . 13
⊢
(∃𝑏(𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑)) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
28 | | vex 3433 |
. . . . . . . . . . . . . 14
⊢ 𝑎 ∈ V |
29 | 28, 22 | brco 5772 |
. . . . . . . . . . . . 13
⊢ (𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑) ↔ ∃𝑏(𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑))) |
30 | | df-rex 3070 |
. . . . . . . . . . . . 13
⊢
(∃𝑏 ∈ dom
𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
31 | 27, 29, 30 | 3bitr4i 303 |
. . . . . . . . . . . 12
⊢ (𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑) ↔ ∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏)) |
32 | 14 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → 𝐹 Fn 𝑉) |
33 | | fnbrfvb 6814 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ 𝑏𝐹(𝐹‘𝑑))) |
34 | 32, 33 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ 𝑏𝐹(𝐹‘𝑑))) |
35 | 34 | anbi1d 630 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → (((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
36 | | imasleval.e |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
37 | 36 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
38 | 37 | an32s 649 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
39 | 38 | anassrs 468 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
40 | 39 | impl 456 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑)) |
41 | 40 | pm5.32da 579 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
42 | 41 | an32s 649 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → (((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
43 | 35, 42 | bitr3d 280 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → ((𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
44 | 43 | rexbidva 3223 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏 ∈ 𝑉 ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
45 | | r19.41v 3274 |
. . . . . . . . . . . . . 14
⊢
(∃𝑏 ∈
𝑉 ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑) ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑)) |
46 | 44, 45 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
47 | 15 | rexeqdv 3347 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
48 | 47 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
49 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → 𝑑 ∈ 𝑉) |
50 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹‘𝑑) = (𝐹‘𝑑) |
51 | | fveqeq2 6775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑑) = (𝐹‘𝑑))) |
52 | 51 | rspcev 3559 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ 𝑉 ∧ (𝐹‘𝑑) = (𝐹‘𝑑)) → ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑)) |
53 | 49, 50, 52 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑)) |
54 | 53 | biantrurd 533 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
55 | 54 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (𝑐𝑁𝑑 ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
56 | 46, 48, 55 | 3bitr4d 311 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ 𝑐𝑁𝑑)) |
57 | 31, 56 | bitrid 282 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑) ↔ 𝑐𝑁𝑑)) |
58 | 57 | pm5.32da 579 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
59 | 19, 58 | bitr3d 280 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → ((𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
60 | 59 | rexbidva 3223 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑎 ∈ 𝑉 (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎 ∈ 𝑉 ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
61 | 16, 60 | bitrd 278 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎 ∈ 𝑉 ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
62 | | fvex 6779 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑐) ∈ V |
63 | 62, 28 | brcnv 5784 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑐)◡𝐹𝑎 ↔ 𝑎𝐹(𝐹‘𝑐)) |
64 | 63 | anbi1i 624 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑))) |
65 | 28, 62 | breldm 5810 |
. . . . . . . . . . . 12
⊢ (𝑎𝐹(𝐹‘𝑐) → 𝑎 ∈ dom 𝐹) |
66 | 65 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) → 𝑎 ∈ dom 𝐹) |
67 | 66 | pm4.71ri 561 |
. . . . . . . . . 10
⊢ ((𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
68 | 64, 67 | bitri 274 |
. . . . . . . . 9
⊢ (((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
69 | 68 | exbii 1850 |
. . . . . . . 8
⊢
(∃𝑎((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
70 | 62, 22 | brco 5772 |
. . . . . . . 8
⊢ ((𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑) ↔ ∃𝑎((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑))) |
71 | | df-rex 3070 |
. . . . . . . 8
⊢
(∃𝑎 ∈ dom
𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
72 | 69, 70, 71 | 3bitr4ri 304 |
. . . . . . 7
⊢
(∃𝑎 ∈ dom
𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑)) |
73 | | r19.41v 3274 |
. . . . . . 7
⊢
(∃𝑎 ∈
𝑉 ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑) ↔ (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑)) |
74 | 61, 72, 73 | 3bitr3g 313 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑) ↔ (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
75 | | imasless.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
76 | | imasless.v |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
77 | | imasless.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
78 | | imasleval.n |
. . . . . . . . 9
⊢ 𝑁 = (le‘𝑅) |
79 | | imasless.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝑈) |
80 | 75, 76, 11, 77, 78, 79 | imasle 17244 |
. . . . . . . 8
⊢ (𝜑 → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) |
81 | 80 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) |
82 | 81 | breqd 5084 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ (𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑))) |
83 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → 𝑐 ∈ 𝑉) |
84 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐹‘𝑐) = (𝐹‘𝑐) |
85 | | fveqeq2 6775 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) = (𝐹‘𝑐) ↔ (𝐹‘𝑐) = (𝐹‘𝑐))) |
86 | 85 | rspcev 3559 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝑉 ∧ (𝐹‘𝑐) = (𝐹‘𝑐)) → ∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐)) |
87 | 83, 84, 86 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐)) |
88 | 87 | biantrurd 533 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
89 | 74, 82, 88 | 3bitr4d 311 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑)) |
90 | 89 | expcom 414 |
. . . 4
⊢ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) → (𝜑 → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑))) |
91 | 5, 10, 90 | vtocl2ga 3511 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌))) |
92 | 91 | com12 32 |
. 2
⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌))) |
93 | 92 | 3impib 1115 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌)) |