MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasleval Structured version   Visualization version   GIF version

Theorem imasleval 17504
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasless.u (𝜑𝑈 = (𝐹s 𝑅))
imasless.v (𝜑𝑉 = (Base‘𝑅))
imasless.f (𝜑𝐹:𝑉onto𝐵)
imasless.r (𝜑𝑅𝑍)
imasless.l = (le‘𝑈)
imasleval.n 𝑁 = (le‘𝑅)
imasleval.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
Assertion
Ref Expression
imasleval ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Distinct variable groups:   𝑐,𝑑,   𝑎,𝑏,𝑐,𝑑,𝐹   𝑁,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑   𝑌,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑   𝑋,𝑐,𝑑
Allowed substitution hints:   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑈(𝑎,𝑏,𝑐,𝑑)   (𝑎,𝑏)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏,𝑐)   𝑍(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem imasleval
StepHypRef Expression
1 fveq2 6858 . . . . . . 7 (𝑐 = 𝑋 → (𝐹𝑐) = (𝐹𝑋))
21breq1d 5117 . . . . . 6 (𝑐 = 𝑋 → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑑)))
3 breq1 5110 . . . . . 6 (𝑐 = 𝑋 → (𝑐𝑁𝑑𝑋𝑁𝑑))
42, 3bibi12d 345 . . . . 5 (𝑐 = 𝑋 → (((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)))
54imbi2d 340 . . . 4 (𝑐 = 𝑋 → ((𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑))))
6 fveq2 6858 . . . . . . 7 (𝑑 = 𝑌 → (𝐹𝑑) = (𝐹𝑌))
76breq2d 5119 . . . . . 6 (𝑑 = 𝑌 → ((𝐹𝑋) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑌)))
8 breq2 5111 . . . . . 6 (𝑑 = 𝑌 → (𝑋𝑁𝑑𝑋𝑁𝑌))
97, 8bibi12d 345 . . . . 5 (𝑑 = 𝑌 → (((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
109imbi2d 340 . . . 4 (𝑑 = 𝑌 → ((𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))))
11 imasless.f . . . . . . . . . . . 12 (𝜑𝐹:𝑉onto𝐵)
12 fofn 6774 . . . . . . . . . . . 12 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑉)
1413adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝐹 Fn 𝑉)
1514fndmd 6623 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → dom 𝐹 = 𝑉)
1615rexeqdv 3300 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
17 fnbrfvb 6911 . . . . . . . . . . . 12 ((𝐹 Fn 𝑉𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1814, 17sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1918anbi1d 631 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
20 ancom 460 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
21 vex 3451 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ V
22 fvex 6871 . . . . . . . . . . . . . . . . . 18 (𝐹𝑑) ∈ V
2321, 22breldm 5872 . . . . . . . . . . . . . . . . 17 (𝑏𝐹(𝐹𝑑) → 𝑏 ∈ dom 𝐹)
2423adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) → 𝑏 ∈ dom 𝐹)
2524pm4.71ri 560 . . . . . . . . . . . . . . 15 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2620, 25bitri 275 . . . . . . . . . . . . . 14 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2726exbii 1848 . . . . . . . . . . . . 13 (∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
28 vex 3451 . . . . . . . . . . . . . 14 𝑎 ∈ V
2928, 22brco 5834 . . . . . . . . . . . . 13 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)))
30 df-rex 3054 . . . . . . . . . . . . 13 (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
3127, 29, 303bitr4i 303 . . . . . . . . . . . 12 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
3214ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → 𝐹 Fn 𝑉)
33 fnbrfvb 6911 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑉𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3432, 33sylan 580 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3534anbi1d 631 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
36 imasleval.e . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
37363expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3837an32s 652 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3938anassrs 467 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
4039impl 455 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑))
4140pm5.32da 579 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4241an32s 652 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4335, 42bitr3d 281 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4443rexbidva 3155 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
45 r19.41v 3167 . . . . . . . . . . . . . 14 (∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑))
4644, 45bitrdi 287 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4715rexeqdv 3300 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
4847ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
49 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑑𝑉)
50 eqid 2729 . . . . . . . . . . . . . . . 16 (𝐹𝑑) = (𝐹𝑑)
51 fveqeq2 6867 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑑 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑑) = (𝐹𝑑)))
5251rspcev 3588 . . . . . . . . . . . . . . . 16 ((𝑑𝑉 ∧ (𝐹𝑑) = (𝐹𝑑)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5349, 50, 52sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5453biantrurd 532 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5554ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5646, 48, 553bitr4d 311 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ 𝑐𝑁𝑑))
5731, 56bitrid 283 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑎(𝐹𝑁)(𝐹𝑑) ↔ 𝑐𝑁𝑑))
5857pm5.32da 579 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
5919, 58bitr3d 281 . . . . . . . . 9 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6059rexbidva 3155 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6116, 60bitrd 279 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
62 fvex 6871 . . . . . . . . . . . 12 (𝐹𝑐) ∈ V
6362, 28brcnv 5846 . . . . . . . . . . 11 ((𝐹𝑐)𝐹𝑎𝑎𝐹(𝐹𝑐))
6463anbi1i 624 . . . . . . . . . 10 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)))
6528, 62breldm 5872 . . . . . . . . . . . 12 (𝑎𝐹(𝐹𝑐) → 𝑎 ∈ dom 𝐹)
6665adantr 480 . . . . . . . . . . 11 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) → 𝑎 ∈ dom 𝐹)
6766pm4.71ri 560 . . . . . . . . . 10 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6864, 67bitri 275 . . . . . . . . 9 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6968exbii 1848 . . . . . . . 8 (∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7062, 22brco 5834 . . . . . . . 8 ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ ∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)))
71 df-rex 3054 . . . . . . . 8 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7269, 70, 713bitr4ri 304 . . . . . . 7 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑))
73 r19.41v 3167 . . . . . . 7 (∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑))
7461, 72, 733bitr3g 313 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
75 imasless.u . . . . . . . . 9 (𝜑𝑈 = (𝐹s 𝑅))
76 imasless.v . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑅))
77 imasless.r . . . . . . . . 9 (𝜑𝑅𝑍)
78 imasleval.n . . . . . . . . 9 𝑁 = (le‘𝑅)
79 imasless.l . . . . . . . . 9 = (le‘𝑈)
8075, 76, 11, 77, 78, 79imasle 17486 . . . . . . . 8 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
8180adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → = ((𝐹𝑁) ∘ 𝐹))
8281breqd 5118 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑)))
83 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑐𝑉)
84 eqid 2729 . . . . . . . 8 (𝐹𝑐) = (𝐹𝑐)
85 fveqeq2 6867 . . . . . . . . 9 (𝑎 = 𝑐 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑐) = (𝐹𝑐)))
8685rspcev 3588 . . . . . . . 8 ((𝑐𝑉 ∧ (𝐹𝑐) = (𝐹𝑐)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8783, 84, 86sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8887biantrurd 532 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
8974, 82, 883bitr4d 311 . . . . 5 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑))
9089expcom 413 . . . 4 ((𝑐𝑉𝑑𝑉) → (𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)))
915, 10, 90vtocl2ga 3544 . . 3 ((𝑋𝑉𝑌𝑉) → (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
9291com12 32 . 2 (𝜑 → ((𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
93923impib 1116 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053   class class class wbr 5107  ccnv 5637  dom cdm 5638  ccom 5642   Fn wfn 6506  ontowfo 6509  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  s cimas 17467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-imas 17471
This theorem is referenced by:  xpsle  17542
  Copyright terms: Public domain W3C validator