Proof of Theorem imasleval
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑐 = 𝑋 → (𝐹‘𝑐) = (𝐹‘𝑋)) |
| 2 | 1 | breq1d 5153 |
. . . . . 6
⊢ (𝑐 = 𝑋 → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑑))) |
| 3 | | breq1 5146 |
. . . . . 6
⊢ (𝑐 = 𝑋 → (𝑐𝑁𝑑 ↔ 𝑋𝑁𝑑)) |
| 4 | 2, 3 | bibi12d 345 |
. . . . 5
⊢ (𝑐 = 𝑋 → (((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑) ↔ ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑))) |
| 5 | 4 | imbi2d 340 |
. . . 4
⊢ (𝑐 = 𝑋 → ((𝜑 → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑)) ↔ (𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑)))) |
| 6 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑑 = 𝑌 → (𝐹‘𝑑) = (𝐹‘𝑌)) |
| 7 | 6 | breq2d 5155 |
. . . . . 6
⊢ (𝑑 = 𝑌 → ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 8 | | breq2 5147 |
. . . . . 6
⊢ (𝑑 = 𝑌 → (𝑋𝑁𝑑 ↔ 𝑋𝑁𝑌)) |
| 9 | 7, 8 | bibi12d 345 |
. . . . 5
⊢ (𝑑 = 𝑌 → (((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑) ↔ ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌))) |
| 10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑑 = 𝑌 → ((𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑑) ↔ 𝑋𝑁𝑑)) ↔ (𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌)))) |
| 11 | | imasless.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 12 | | fofn 6822 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝑉) |
| 14 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → 𝐹 Fn 𝑉) |
| 15 | 14 | fndmd 6673 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → dom 𝐹 = 𝑉) |
| 16 | 15 | rexeqdv 3327 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎 ∈ 𝑉 (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
| 17 | | fnbrfvb 6959 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝑉 ∧ 𝑎 ∈ 𝑉) → ((𝐹‘𝑎) = (𝐹‘𝑐) ↔ 𝑎𝐹(𝐹‘𝑐))) |
| 18 | 14, 17 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → ((𝐹‘𝑎) = (𝐹‘𝑐) ↔ 𝑎𝐹(𝐹‘𝑐))) |
| 19 | 18 | anbi1d 631 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
| 20 | | ancom 460 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑)) ↔ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏)) |
| 21 | | vex 3484 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V |
| 22 | | fvex 6919 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘𝑑) ∈ V |
| 23 | 21, 22 | breldm 5919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏𝐹(𝐹‘𝑑) → 𝑏 ∈ dom 𝐹) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) → 𝑏 ∈ dom 𝐹) |
| 25 | 24 | pm4.71ri 560 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
| 26 | 20, 25 | bitri 275 |
. . . . . . . . . . . . . 14
⊢ ((𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑)) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
| 27 | 26 | exbii 1848 |
. . . . . . . . . . . . 13
⊢
(∃𝑏(𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑)) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
| 28 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑎 ∈ V |
| 29 | 28, 22 | brco 5881 |
. . . . . . . . . . . . 13
⊢ (𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑) ↔ ∃𝑏(𝑎𝑁𝑏 ∧ 𝑏𝐹(𝐹‘𝑑))) |
| 30 | | df-rex 3071 |
. . . . . . . . . . . . 13
⊢
(∃𝑏 ∈ dom
𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
| 31 | 27, 29, 30 | 3bitr4i 303 |
. . . . . . . . . . . 12
⊢ (𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑) ↔ ∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏)) |
| 32 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → 𝐹 Fn 𝑉) |
| 33 | | fnbrfvb 6959 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ 𝑏𝐹(𝐹‘𝑑))) |
| 34 | 32, 33 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ 𝑏𝐹(𝐹‘𝑑))) |
| 35 | 34 | anbi1d 631 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → (((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
| 36 | | imasleval.e |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
| 37 | 36 | 3expa 1119 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
| 38 | 37 | an32s 652 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
| 39 | 38 | anassrs 467 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑))) |
| 40 | 39 | impl 455 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝑎𝑁𝑏 ↔ 𝑐𝑁𝑑)) |
| 41 | 40 | pm5.32da 579 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
| 42 | 41 | an32s 652 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → (((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
| 43 | 35, 42 | bitr3d 281 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) ∧ 𝑏 ∈ 𝑉) → ((𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
| 44 | 43 | rexbidva 3177 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏 ∈ 𝑉 ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
| 45 | | r19.41v 3189 |
. . . . . . . . . . . . . 14
⊢
(∃𝑏 ∈
𝑉 ((𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑) ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑)) |
| 46 | 44, 45 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
| 47 | 15 | rexeqdv 3327 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
| 48 | 47 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏 ∈ 𝑉 (𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏))) |
| 49 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → 𝑑 ∈ 𝑉) |
| 50 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹‘𝑑) = (𝐹‘𝑑) |
| 51 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑏) = (𝐹‘𝑑) ↔ (𝐹‘𝑑) = (𝐹‘𝑑))) |
| 52 | 51 | rspcev 3622 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ 𝑉 ∧ (𝐹‘𝑑) = (𝐹‘𝑑)) → ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑)) |
| 53 | 49, 50, 52 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑)) |
| 54 | 53 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
| 55 | 54 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (𝑐𝑁𝑑 ↔ (∃𝑏 ∈ 𝑉 (𝐹‘𝑏) = (𝐹‘𝑑) ∧ 𝑐𝑁𝑑))) |
| 56 | 46, 48, 55 | 3bitr4d 311 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹‘𝑑) ∧ 𝑎𝑁𝑏) ↔ 𝑐𝑁𝑑)) |
| 57 | 31, 56 | bitrid 283 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) ∧ (𝐹‘𝑎) = (𝐹‘𝑐)) → (𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑) ↔ 𝑐𝑁𝑑)) |
| 58 | 57 | pm5.32da 579 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
| 59 | 19, 58 | bitr3d 281 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) ∧ 𝑎 ∈ 𝑉) → ((𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
| 60 | 59 | rexbidva 3177 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑎 ∈ 𝑉 (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎 ∈ 𝑉 ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
| 61 | 16, 60 | bitrd 279 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎 ∈ 𝑉 ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
| 62 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑐) ∈ V |
| 63 | 62, 28 | brcnv 5893 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑐)◡𝐹𝑎 ↔ 𝑎𝐹(𝐹‘𝑐)) |
| 64 | 63 | anbi1i 624 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑))) |
| 65 | 28, 62 | breldm 5919 |
. . . . . . . . . . . 12
⊢ (𝑎𝐹(𝐹‘𝑐) → 𝑎 ∈ dom 𝐹) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) → 𝑎 ∈ dom 𝐹) |
| 67 | 66 | pm4.71ri 560 |
. . . . . . . . . 10
⊢ ((𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
| 68 | 64, 67 | bitri 275 |
. . . . . . . . 9
⊢ (((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
| 69 | 68 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑎((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
| 70 | 62, 22 | brco 5881 |
. . . . . . . 8
⊢ ((𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑) ↔ ∃𝑎((𝐹‘𝑐)◡𝐹𝑎 ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑))) |
| 71 | | df-rex 3071 |
. . . . . . . 8
⊢
(∃𝑎 ∈ dom
𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)))) |
| 72 | 69, 70, 71 | 3bitr4ri 304 |
. . . . . . 7
⊢
(∃𝑎 ∈ dom
𝐹(𝑎𝐹(𝐹‘𝑐) ∧ 𝑎(𝐹 ∘ 𝑁)(𝐹‘𝑑)) ↔ (𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑)) |
| 73 | | r19.41v 3189 |
. . . . . . 7
⊢
(∃𝑎 ∈
𝑉 ((𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑) ↔ (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑)) |
| 74 | 61, 72, 73 | 3bitr3g 313 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑) ↔ (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
| 75 | | imasless.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| 76 | | imasless.v |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| 77 | | imasless.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| 78 | | imasleval.n |
. . . . . . . . 9
⊢ 𝑁 = (le‘𝑅) |
| 79 | | imasless.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝑈) |
| 80 | 75, 76, 11, 77, 78, 79 | imasle 17568 |
. . . . . . . 8
⊢ (𝜑 → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) |
| 81 | 80 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) |
| 82 | 81 | breqd 5154 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ (𝐹‘𝑐)((𝐹 ∘ 𝑁) ∘ ◡𝐹)(𝐹‘𝑑))) |
| 83 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → 𝑐 ∈ 𝑉) |
| 84 | | eqid 2737 |
. . . . . . . 8
⊢ (𝐹‘𝑐) = (𝐹‘𝑐) |
| 85 | | fveqeq2 6915 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) = (𝐹‘𝑐) ↔ (𝐹‘𝑐) = (𝐹‘𝑐))) |
| 86 | 85 | rspcev 3622 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝑉 ∧ (𝐹‘𝑐) = (𝐹‘𝑐)) → ∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐)) |
| 87 | 83, 84, 86 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐)) |
| 88 | 87 | biantrurd 532 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑎 ∈ 𝑉 (𝐹‘𝑎) = (𝐹‘𝑐) ∧ 𝑐𝑁𝑑))) |
| 89 | 74, 82, 88 | 3bitr4d 311 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑)) |
| 90 | 89 | expcom 413 |
. . . 4
⊢ ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) → (𝜑 → ((𝐹‘𝑐) ≤ (𝐹‘𝑑) ↔ 𝑐𝑁𝑑))) |
| 91 | 5, 10, 90 | vtocl2ga 3578 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝜑 → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌))) |
| 92 | 91 | com12 32 |
. 2
⊢ (𝜑 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌))) |
| 93 | 92 | 3impib 1117 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ≤ (𝐹‘𝑌) ↔ 𝑋𝑁𝑌)) |