MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasleval Structured version   Visualization version   GIF version

Theorem imasleval 16805
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasless.u (𝜑𝑈 = (𝐹s 𝑅))
imasless.v (𝜑𝑉 = (Base‘𝑅))
imasless.f (𝜑𝐹:𝑉onto𝐵)
imasless.r (𝜑𝑅𝑍)
imasless.l = (le‘𝑈)
imasleval.n 𝑁 = (le‘𝑅)
imasleval.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
Assertion
Ref Expression
imasleval ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Distinct variable groups:   𝑐,𝑑,   𝑎,𝑏,𝑐,𝑑,𝐹   𝑁,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑   𝑌,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑   𝑋,𝑐,𝑑
Allowed substitution hints:   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑈(𝑎,𝑏,𝑐,𝑑)   (𝑎,𝑏)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏,𝑐)   𝑍(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem imasleval
StepHypRef Expression
1 fveq2 6652 . . . . . . 7 (𝑐 = 𝑋 → (𝐹𝑐) = (𝐹𝑋))
21breq1d 5052 . . . . . 6 (𝑐 = 𝑋 → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑑)))
3 breq1 5045 . . . . . 6 (𝑐 = 𝑋 → (𝑐𝑁𝑑𝑋𝑁𝑑))
42, 3bibi12d 349 . . . . 5 (𝑐 = 𝑋 → (((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)))
54imbi2d 344 . . . 4 (𝑐 = 𝑋 → ((𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑))))
6 fveq2 6652 . . . . . . 7 (𝑑 = 𝑌 → (𝐹𝑑) = (𝐹𝑌))
76breq2d 5054 . . . . . 6 (𝑑 = 𝑌 → ((𝐹𝑋) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑌)))
8 breq2 5046 . . . . . 6 (𝑑 = 𝑌 → (𝑋𝑁𝑑𝑋𝑁𝑌))
97, 8bibi12d 349 . . . . 5 (𝑑 = 𝑌 → (((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
109imbi2d 344 . . . 4 (𝑑 = 𝑌 → ((𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))))
11 imasless.f . . . . . . . . . . . 12 (𝜑𝐹:𝑉onto𝐵)
12 fofn 6574 . . . . . . . . . . . 12 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑉)
1413adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝐹 Fn 𝑉)
1514fndmd 6436 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → dom 𝐹 = 𝑉)
1615rexeqdv 3393 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
17 fnbrfvb 6700 . . . . . . . . . . . 12 ((𝐹 Fn 𝑉𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1814, 17sylan 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1918anbi1d 632 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
20 ancom 464 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
21 vex 3472 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ V
22 fvex 6665 . . . . . . . . . . . . . . . . . 18 (𝐹𝑑) ∈ V
2321, 22breldm 5754 . . . . . . . . . . . . . . . . 17 (𝑏𝐹(𝐹𝑑) → 𝑏 ∈ dom 𝐹)
2423adantr 484 . . . . . . . . . . . . . . . 16 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) → 𝑏 ∈ dom 𝐹)
2524pm4.71ri 564 . . . . . . . . . . . . . . 15 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2620, 25bitri 278 . . . . . . . . . . . . . 14 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2726exbii 1849 . . . . . . . . . . . . 13 (∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
28 vex 3472 . . . . . . . . . . . . . 14 𝑎 ∈ V
2928, 22brco 5718 . . . . . . . . . . . . 13 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)))
30 df-rex 3136 . . . . . . . . . . . . 13 (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
3127, 29, 303bitr4i 306 . . . . . . . . . . . 12 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
3214ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → 𝐹 Fn 𝑉)
33 fnbrfvb 6700 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑉𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3432, 33sylan 583 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3534anbi1d 632 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
36 imasleval.e . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
37363expa 1115 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3837an32s 651 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3938anassrs 471 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
4039impl 459 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑))
4140pm5.32da 582 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4241an32s 651 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4335, 42bitr3d 284 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4443rexbidva 3282 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
45 r19.41v 3328 . . . . . . . . . . . . . 14 (∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑))
4644, 45syl6bb 290 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4715rexeqdv 3393 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
4847ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
49 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑑𝑉)
50 eqid 2822 . . . . . . . . . . . . . . . 16 (𝐹𝑑) = (𝐹𝑑)
51 fveqeq2 6661 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑑 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑑) = (𝐹𝑑)))
5251rspcev 3598 . . . . . . . . . . . . . . . 16 ((𝑑𝑉 ∧ (𝐹𝑑) = (𝐹𝑑)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5349, 50, 52sylancl 589 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5453biantrurd 536 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5554ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5646, 48, 553bitr4d 314 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ 𝑐𝑁𝑑))
5731, 56syl5bb 286 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑎(𝐹𝑁)(𝐹𝑑) ↔ 𝑐𝑁𝑑))
5857pm5.32da 582 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
5919, 58bitr3d 284 . . . . . . . . 9 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6059rexbidva 3282 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6116, 60bitrd 282 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
62 fvex 6665 . . . . . . . . . . . 12 (𝐹𝑐) ∈ V
6362, 28brcnv 5730 . . . . . . . . . . 11 ((𝐹𝑐)𝐹𝑎𝑎𝐹(𝐹𝑐))
6463anbi1i 626 . . . . . . . . . 10 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)))
6528, 62breldm 5754 . . . . . . . . . . . 12 (𝑎𝐹(𝐹𝑐) → 𝑎 ∈ dom 𝐹)
6665adantr 484 . . . . . . . . . . 11 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) → 𝑎 ∈ dom 𝐹)
6766pm4.71ri 564 . . . . . . . . . 10 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6864, 67bitri 278 . . . . . . . . 9 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6968exbii 1849 . . . . . . . 8 (∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7062, 22brco 5718 . . . . . . . 8 ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ ∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)))
71 df-rex 3136 . . . . . . . 8 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7269, 70, 713bitr4ri 307 . . . . . . 7 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑))
73 r19.41v 3328 . . . . . . 7 (∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑))
7461, 72, 733bitr3g 316 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
75 imasless.u . . . . . . . . 9 (𝜑𝑈 = (𝐹s 𝑅))
76 imasless.v . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑅))
77 imasless.r . . . . . . . . 9 (𝜑𝑅𝑍)
78 imasleval.n . . . . . . . . 9 𝑁 = (le‘𝑅)
79 imasless.l . . . . . . . . 9 = (le‘𝑈)
8075, 76, 11, 77, 78, 79imasle 16787 . . . . . . . 8 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
8180adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → = ((𝐹𝑁) ∘ 𝐹))
8281breqd 5053 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑)))
83 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑐𝑉)
84 eqid 2822 . . . . . . . 8 (𝐹𝑐) = (𝐹𝑐)
85 fveqeq2 6661 . . . . . . . . 9 (𝑎 = 𝑐 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑐) = (𝐹𝑐)))
8685rspcev 3598 . . . . . . . 8 ((𝑐𝑉 ∧ (𝐹𝑐) = (𝐹𝑐)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8783, 84, 86sylancl 589 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8887biantrurd 536 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
8974, 82, 883bitr4d 314 . . . . 5 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑))
9089expcom 417 . . . 4 ((𝑐𝑉𝑑𝑉) → (𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)))
915, 10, 90vtocl2ga 3550 . . 3 ((𝑋𝑉𝑌𝑉) → (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
9291com12 32 . 2 (𝜑 → ((𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
93923impib 1113 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2114  wrex 3131   class class class wbr 5042  ccnv 5531  dom cdm 5532  ccom 5536   Fn wfn 6329  ontowfo 6332  cfv 6334  (class class class)co 7140  Basecbs 16474  lecple 16563  s cimas 16768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-imas 16772
This theorem is referenced by:  xpsle  16843
  Copyright terms: Public domain W3C validator