MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrelem Structured version   Visualization version   GIF version

Theorem fsumrelem 14823
Description: Lemma for fsumre 14824, fsumim 14825, and fsumcj 14826. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10285 . . . . . . . 8 0 ∈ ℂ
2 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
32ffvelrni 6548 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
41, 3ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
54addid1i 10477 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
6 fvoveq1 6865 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
7 fveq2 6375 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
87oveq1d 6857 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
96, 8eqeq12d 2780 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
10 oveq2 6850 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
11 00id 10465 . . . . . . . . . . 11 (0 + 0) = 0
1210, 11syl6eq 2815 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
1312fveq2d 6379 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
14 fveq2 6375 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
1514oveq2d 6858 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
1613, 15eqeq12d 2780 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
17 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
189, 16, 17vtocl2ga 3426 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
191, 1, 18mp2an 683 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
205, 19eqtr2i 2788 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
214, 4, 1addcani 10483 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
2220, 21mpbi 221 . . . 4 (𝐹‘0) = 0
23 sumeq1 14704 . . . . . 6 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
24 sum0 14737 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
2523, 24syl6eq 2815 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
2625fveq2d 6379 . . . 4 (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = (𝐹‘0))
27 sumeq1 14704 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
28 sum0 14737 . . . . 5 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
2927, 28syl6eq 2815 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐹𝐵) = 0)
3022, 26, 293eqtr4a 2825 . . 3 (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
3130a1i 11 . 2 (𝜑 → (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
32 addcl 10271 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3332adantl 473 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
34 fsumre.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3534fmpttd 6575 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
3635adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
37 simprr 789 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
38 f1of 6320 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
40 fco 6240 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
4136, 39, 40syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
4241ffvelrnda 6549 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
43 simprl 787 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
44 nnuz 11923 . . . . . . . . 9 ℕ = (ℤ‘1)
4543, 44syl6eleq 2854 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
4617adantl 473 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
4739ffvelrnda 6549 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓𝑥) ∈ 𝐴)
48 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑘𝐴)
49 eqid 2765 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5049fvmpt2 6480 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5148, 34, 50syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5251fveq2d 6379 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = (𝐹𝐵))
53 fvex 6388 . . . . . . . . . . . . . 14 (𝐹𝐵) ∈ V
54 eqid 2765 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐹𝐵)) = (𝑘𝐴 ↦ (𝐹𝐵))
5554fvmpt2 6480 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐹𝐵) ∈ V) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = (𝐹𝐵))
5648, 53, 55sylancl 580 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = (𝐹𝐵))
5752, 56eqtr4d 2802 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
5857ralrimiva 3113 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
5958ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
60 nfcv 2907 . . . . . . . . . . . . 13 𝑘𝐹
61 nffvmpt1 6386 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑥))
6260, 61nffv 6385 . . . . . . . . . . . 12 𝑘(𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥)))
63 nffvmpt1 6386 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))
6462, 63nfeq 2919 . . . . . . . . . . 11 𝑘(𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))
65 2fveq3 6380 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑥) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))))
66 fveq2 6375 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑥) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
6765, 66eqeq12d 2780 . . . . . . . . . . 11 (𝑘 = (𝑓𝑥) → ((𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) ↔ (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))))
6864, 67rspc 3455 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝐴 → (∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) → (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))))
6947, 59, 68sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
70 fvco3 6464 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7139, 70sylan 575 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7271fveq2d 6379 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥)) = (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))))
73 fvco3 6464 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
7439, 73sylan 575 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
7569, 72, 743eqtr4d 2809 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥)) = (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥))
7633, 42, 45, 46, 75seqhomo 13055 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘(seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))) = (seq1( + , ((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
77 fveq2 6375 . . . . . . . . 9 (𝑚 = (𝑓𝑥) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7836ffvelrnda 6549 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7977, 43, 37, 78, 71fsum 14736 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
8079fveq2d 6379 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐹‘(seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))))
81 fveq2 6375 . . . . . . . 8 (𝑚 = (𝑓𝑥) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
822ffvelrni 6548 . . . . . . . . . . . 12 (𝐵 ∈ ℂ → (𝐹𝐵) ∈ ℂ)
8334, 82syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝐵) ∈ ℂ)
8483fmpttd 6575 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
8584adantr 472 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
8685ffvelrnda 6549 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) ∈ ℂ)
8781, 43, 37, 86, 74fsum 14736 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
8876, 80, 873eqtr4d 2809 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚))
89 sumfc 14725 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
9089fveq2i 6378 . . . . . 6 (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐹‘Σ𝑘𝐴 𝐵)
91 sumfc 14725 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = Σ𝑘𝐴 (𝐹𝐵)
9288, 90, 913eqtr3g 2822 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
9392expr 448 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
9493exlimdv 2028 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
9594expimpd 445 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
96 fsumre.1 . . 3 (𝜑𝐴 ∈ Fin)
97 fz1f1o 14726 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9896, 97syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9931, 95, 98mpjaod 886 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wo 873   = wceq 1652  wex 1874  wcel 2155  wral 3055  Vcvv 3350  c0 4079  cmpt 4888  ccom 5281  wf 6064  1-1-ontowf1o 6067  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cn 11274  cuz 11886  ...cfz 12533  seqcseq 13008  chash 13321  Σcsu 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702
This theorem is referenced by:  fsumre  14824  fsumim  14825  fsumcj  14826
  Copyright terms: Public domain W3C validator