MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrelem Structured version   Visualization version   GIF version

Theorem fsumrelem 15714
Description: Lemma for fsumre 15715, fsumim 15716, and fsumcj 15717. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11104 . . . . . . . 8 0 ∈ ℂ
2 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
32ffvelcdmi 7016 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
41, 3ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
54addridi 11300 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
6 fvoveq1 7369 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
7 fveq2 6822 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
87oveq1d 7361 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
96, 8eqeq12d 2747 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
10 oveq2 7354 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
11 00id 11288 . . . . . . . . . . 11 (0 + 0) = 0
1210, 11eqtrdi 2782 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
1312fveq2d 6826 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
14 fveq2 6822 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
1514oveq2d 7362 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
1613, 15eqeq12d 2747 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
17 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
189, 16, 17vtocl2ga 3529 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
191, 1, 18mp2an 692 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
205, 19eqtr2i 2755 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
214, 4, 1addcani 11306 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
2220, 21mpbi 230 . . . 4 (𝐹‘0) = 0
23 sumeq1 15596 . . . . . 6 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
24 sum0 15628 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
2523, 24eqtrdi 2782 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
2625fveq2d 6826 . . . 4 (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = (𝐹‘0))
27 sumeq1 15596 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
28 sum0 15628 . . . . 5 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
2927, 28eqtrdi 2782 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐹𝐵) = 0)
3022, 26, 293eqtr4a 2792 . . 3 (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
3130a1i 11 . 2 (𝜑 → (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
32 addcl 11088 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3332adantl 481 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
34 fsumre.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3534fmpttd 7048 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
3635adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
37 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
38 f1of 6763 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
40 fco 6675 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
4136, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
4241ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
43 simprl 770 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
44 nnuz 12775 . . . . . . . . 9 ℕ = (ℤ‘1)
4543, 44eleqtrdi 2841 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
4617adantl 481 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
4739ffvelcdmda 7017 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓𝑥) ∈ 𝐴)
48 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑘𝐴)
49 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5049fvmpt2 6940 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5148, 34, 50syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5251fveq2d 6826 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = (𝐹𝐵))
53 fvex 6835 . . . . . . . . . . . . . 14 (𝐹𝐵) ∈ V
54 eqid 2731 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐹𝐵)) = (𝑘𝐴 ↦ (𝐹𝐵))
5554fvmpt2 6940 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐹𝐵) ∈ V) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = (𝐹𝐵))
5648, 53, 55sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = (𝐹𝐵))
5752, 56eqtr4d 2769 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
5857ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
5958ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
60 nfcv 2894 . . . . . . . . . . . . 13 𝑘𝐹
61 nffvmpt1 6833 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑥))
6260, 61nffv 6832 . . . . . . . . . . . 12 𝑘(𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥)))
63 nffvmpt1 6833 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))
6462, 63nfeq 2908 . . . . . . . . . . 11 𝑘(𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))
65 2fveq3 6827 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑥) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))))
66 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑥) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
6765, 66eqeq12d 2747 . . . . . . . . . . 11 (𝑘 = (𝑓𝑥) → ((𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) ↔ (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))))
6864, 67rspc 3560 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝐴 → (∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) → (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))))
6947, 59, 68sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
70 fvco3 6921 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7139, 70sylan 580 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7271fveq2d 6826 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥)) = (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))))
73 fvco3 6921 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
7439, 73sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
7569, 72, 743eqtr4d 2776 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥)) = (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥))
7633, 42, 45, 46, 75seqhomo 13956 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘(seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))) = (seq1( + , ((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
77 fveq2 6822 . . . . . . . . 9 (𝑚 = (𝑓𝑥) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7836ffvelcdmda 7017 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7977, 43, 37, 78, 71fsum 15627 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
8079fveq2d 6826 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐹‘(seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))))
81 fveq2 6822 . . . . . . . 8 (𝑚 = (𝑓𝑥) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
822ffvelcdmi 7016 . . . . . . . . . . . 12 (𝐵 ∈ ℂ → (𝐹𝐵) ∈ ℂ)
8334, 82syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝐵) ∈ ℂ)
8483fmpttd 7048 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
8584adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
8685ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) ∈ ℂ)
8781, 43, 37, 86, 74fsum 15627 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
8876, 80, 873eqtr4d 2776 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚))
89 sumfc 15616 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
9089fveq2i 6825 . . . . . 6 (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐹‘Σ𝑘𝐴 𝐵)
91 sumfc 15616 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = Σ𝑘𝐴 (𝐹𝐵)
9288, 90, 913eqtr3g 2789 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
9392expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
9493exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
9594expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
96 fsumre.1 . . 3 (𝜑𝐴 ∈ Fin)
97 fz1f1o 15617 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9896, 97syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9931, 95, 98mpjaod 860 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  c0 4280  cmpt 5170  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   + caddc 11009  cn 12125  cuz 12732  ...cfz 13407  seqcseq 13908  chash 14237  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  fsumre  15715  fsumim  15716  fsumcj  15717
  Copyright terms: Public domain W3C validator