Step | Hyp | Ref
| Expression |
1 | | 0cn 10967 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
2 | | fsumrelem.3 |
. . . . . . . . 9
⊢ 𝐹:ℂ⟶ℂ |
3 | 2 | ffvelrni 6960 |
. . . . . . . 8
⊢ (0 ∈
ℂ → (𝐹‘0)
∈ ℂ) |
4 | 1, 3 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹‘0) ∈
ℂ |
5 | 4 | addid1i 11162 |
. . . . . 6
⊢ ((𝐹‘0) + 0) = (𝐹‘0) |
6 | | fvoveq1 7298 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦))) |
7 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) |
8 | 7 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((𝐹‘𝑥) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘𝑦))) |
9 | 6, 8 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)))) |
10 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (0 + 𝑦) = (0 + 0)) |
11 | | 00id 11150 |
. . . . . . . . . . 11
⊢ (0 + 0) =
0 |
12 | 10, 11 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (0 + 𝑦) = 0) |
13 | 12 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0)) |
14 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (𝐹‘𝑦) = (𝐹‘0)) |
15 | 14 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑦 = 0 → ((𝐹‘0) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘0))) |
16 | 13, 15 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))) |
17 | | fsumrelem.4 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
18 | 9, 16, 17 | vtocl2ga 3514 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))) |
19 | 1, 1, 18 | mp2an 689 |
. . . . . 6
⊢ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)) |
20 | 5, 19 | eqtr2i 2767 |
. . . . 5
⊢ ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) |
21 | 4, 4, 1 | addcani 11168 |
. . . . 5
⊢ (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0) |
22 | 20, 21 | mpbi 229 |
. . . 4
⊢ (𝐹‘0) = 0 |
23 | | sumeq1 15400 |
. . . . . 6
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
24 | | sum0 15433 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
25 | 23, 24 | eqtrdi 2794 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
26 | 25 | fveq2d 6778 |
. . . 4
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = (𝐹‘0)) |
27 | | sumeq1 15400 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = Σ𝑘 ∈ ∅ (𝐹‘𝐵)) |
28 | | sum0 15433 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐹‘𝐵) = 0 |
29 | 27, 28 | eqtrdi 2794 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = 0) |
30 | 22, 26, 29 | 3eqtr4a 2804 |
. . 3
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
31 | 30 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
32 | | addcl 10953 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
33 | 32 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
34 | | fsumre.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
35 | 34 | fmpttd 6989 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
36 | 35 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
37 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
38 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
40 | | fco 6624 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
41 | 36, 39, 40 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
42 | 41 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ) |
43 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
44 | | nnuz 12621 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
45 | 43, 44 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
46 | 17 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
47 | 39 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑥) ∈ 𝐴) |
48 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
49 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
50 | 49 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
51 | 48, 34, 50 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
52 | 51 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘𝐵)) |
53 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐵) ∈ V |
54 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) |
55 | 54 | fvmpt2 6886 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ V) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
56 | 48, 53, 55 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
57 | 52, 56 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
58 | 57 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
59 | 58 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
60 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐹 |
61 | | nffvmpt1 6785 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)) |
62 | 60, 61 | nffv 6784 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
63 | | nffvmpt1 6785 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
64 | 62, 63 | nfeq 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
65 | | 2fveq3 6779 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
66 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
67 | 65, 66 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑥) → ((𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) ↔ (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
68 | 64, 67 | rspc 3549 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
69 | 47, 59, 68 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
70 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
71 | 39, 70 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
72 | 71 | fveq2d 6778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
73 | | fvco3 6867 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
74 | 39, 73 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
75 | 69, 72, 74 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥)) |
76 | 33, 42, 45, 46, 75 | seqhomo 13770 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(♯‘𝐴))) |
77 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
78 | 36 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
79 | 77, 43, 37, 78, 71 | fsum 15432 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
80 | 79 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)))) |
81 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
82 | 2 | ffvelrni 6960 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℂ → (𝐹‘𝐵) ∈ ℂ) |
83 | 34, 82 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℂ) |
84 | 83 | fmpttd 6989 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
85 | 84 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
86 | 85 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) ∈ ℂ) |
87 | 81, 43, 37, 86, 74 | fsum 15432 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(♯‘𝐴))) |
88 | 76, 80, 87 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚)) |
89 | | sumfc 15421 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
90 | 89 | fveq2i 6777 |
. . . . . 6
⊢ (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) |
91 | | sumfc 15421 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) |
92 | 88, 90, 91 | 3eqtr3g 2801 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
93 | 92 | expr 457 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
94 | 93 | exlimdv 1936 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
95 | 94 | expimpd 454 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
96 | | fsumre.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
97 | | fz1f1o 15422 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
98 | 96, 97 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
99 | 31, 95, 98 | mpjaod 857 |
1
⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |