MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrelem Structured version   Visualization version   GIF version

Theorem fsumrelem 15773
Description: Lemma for fsumre 15774, fsumim 15775, and fsumcj 15776. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11166 . . . . . . . 8 0 ∈ ℂ
2 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
32ffvelcdmi 7055 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
41, 3ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
54addridi 11361 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
6 fvoveq1 7410 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
7 fveq2 6858 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
87oveq1d 7402 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
96, 8eqeq12d 2745 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
10 oveq2 7395 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
11 00id 11349 . . . . . . . . . . 11 (0 + 0) = 0
1210, 11eqtrdi 2780 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
1312fveq2d 6862 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
14 fveq2 6858 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
1514oveq2d 7403 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
1613, 15eqeq12d 2745 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
17 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
189, 16, 17vtocl2ga 3544 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
191, 1, 18mp2an 692 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
205, 19eqtr2i 2753 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
214, 4, 1addcani 11367 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
2220, 21mpbi 230 . . . 4 (𝐹‘0) = 0
23 sumeq1 15655 . . . . . 6 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
24 sum0 15687 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
2523, 24eqtrdi 2780 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
2625fveq2d 6862 . . . 4 (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = (𝐹‘0))
27 sumeq1 15655 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
28 sum0 15687 . . . . 5 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
2927, 28eqtrdi 2780 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐹𝐵) = 0)
3022, 26, 293eqtr4a 2790 . . 3 (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
3130a1i 11 . 2 (𝜑 → (𝐴 = ∅ → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
32 addcl 11150 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3332adantl 481 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
34 fsumre.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3534fmpttd 7087 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
3635adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
37 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
38 f1of 6800 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
3937, 38syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
40 fco 6712 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
4136, 39, 40syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
4241ffvelcdmda 7056 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
43 simprl 770 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
44 nnuz 12836 . . . . . . . . 9 ℕ = (ℤ‘1)
4543, 44eleqtrdi 2838 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
4617adantl 481 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
4739ffvelcdmda 7056 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓𝑥) ∈ 𝐴)
48 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑘𝐴)
49 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5049fvmpt2 6979 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5148, 34, 50syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
5251fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = (𝐹𝐵))
53 fvex 6871 . . . . . . . . . . . . . 14 (𝐹𝐵) ∈ V
54 eqid 2729 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐹𝐵)) = (𝑘𝐴 ↦ (𝐹𝐵))
5554fvmpt2 6979 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐹𝐵) ∈ V) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = (𝐹𝐵))
5648, 53, 55sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = (𝐹𝐵))
5752, 56eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
5857ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
5958ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘))
60 nfcv 2891 . . . . . . . . . . . . 13 𝑘𝐹
61 nffvmpt1 6869 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑥))
6260, 61nffv 6868 . . . . . . . . . . . 12 𝑘(𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥)))
63 nffvmpt1 6869 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))
6462, 63nfeq 2905 . . . . . . . . . . 11 𝑘(𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))
65 2fveq3 6863 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑥) → (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))))
66 fveq2 6858 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑥) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
6765, 66eqeq12d 2745 . . . . . . . . . . 11 (𝑘 = (𝑓𝑥) → ((𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) ↔ (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))))
6864, 67rspc 3576 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝐴 → (∀𝑘𝐴 (𝐹‘((𝑘𝐴𝐵)‘𝑘)) = ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑘) → (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥))))
6947, 59, 68sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
70 fvco3 6960 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7139, 70sylan 580 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7271fveq2d 6862 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥)) = (𝐹‘((𝑘𝐴𝐵)‘(𝑓𝑥))))
73 fvco3 6960 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
7439, 73sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
7569, 72, 743eqtr4d 2774 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥)) = (((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓)‘𝑥))
7633, 42, 45, 46, 75seqhomo 14014 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘(seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))) = (seq1( + , ((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
77 fveq2 6858 . . . . . . . . 9 (𝑚 = (𝑓𝑥) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑥)))
7836ffvelcdmda 7056 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7977, 43, 37, 78, 71fsum 15686 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
8079fveq2d 6862 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐹‘(seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))))
81 fveq2 6858 . . . . . . . 8 (𝑚 = (𝑓𝑥) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = ((𝑘𝐴 ↦ (𝐹𝐵))‘(𝑓𝑥)))
822ffvelcdmi 7055 . . . . . . . . . . . 12 (𝐵 ∈ ℂ → (𝐹𝐵) ∈ ℂ)
8334, 82syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝐵) ∈ ℂ)
8483fmpttd 7087 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
8584adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
8685ffvelcdmda 7056 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) ∈ ℂ)
8781, 43, 37, 86, 74fsum 15686 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐹𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
8876, 80, 873eqtr4d 2774 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚))
89 sumfc 15675 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
9089fveq2i 6861 . . . . . 6 (𝐹‘Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐹‘Σ𝑘𝐴 𝐵)
91 sumfc 15675 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐹𝐵))‘𝑚) = Σ𝑘𝐴 (𝐹𝐵)
9288, 90, 913eqtr3g 2787 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
9392expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
9493exlimdv 1933 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
9594expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
96 fsumre.1 . . 3 (𝜑𝐴 ∈ Fin)
97 fz1f1o 15676 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9896, 97syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9931, 95, 98mpjaod 860 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447  c0 4296  cmpt 5188  ccom 5642  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  fsumre  15774  fsumim  15775  fsumcj  15776
  Copyright terms: Public domain W3C validator