Proof of Theorem symggrplem
Step | Hyp | Ref
| Expression |
1 | | coass 6169 |
. 2
⊢ ((𝑋 ∘ 𝑌) ∘ 𝑍) = (𝑋 ∘ (𝑌 ∘ 𝑍)) |
2 | | oveq1 7282 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 + 𝑦) = (𝑋 + 𝑦)) |
3 | 2 | eleq1d 2823 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑋 + 𝑦) ∈ 𝐵)) |
4 | | oveq2 7283 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) |
5 | 4 | eleq1d 2823 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 + 𝑦) ∈ 𝐵 ↔ (𝑋 + 𝑌) ∈ 𝐵)) |
6 | | symggrplem.c |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
7 | 3, 5, 6 | vtocl2ga 3514 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
8 | | oveq1 7282 |
. . . . . 6
⊢ (𝑥 = (𝑋 + 𝑌) → (𝑥 + 𝑦) = ((𝑋 + 𝑌) + 𝑦)) |
9 | | coeq1 5766 |
. . . . . 6
⊢ (𝑥 = (𝑋 + 𝑌) → (𝑥 ∘ 𝑦) = ((𝑋 + 𝑌) ∘ 𝑦)) |
10 | 8, 9 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = (𝑋 + 𝑌) → ((𝑥 + 𝑦) = (𝑥 ∘ 𝑦) ↔ ((𝑋 + 𝑌) + 𝑦) = ((𝑋 + 𝑌) ∘ 𝑦))) |
11 | | oveq2 7283 |
. . . . . 6
⊢ (𝑦 = 𝑍 → ((𝑋 + 𝑌) + 𝑦) = ((𝑋 + 𝑌) + 𝑍)) |
12 | | coeq2 5767 |
. . . . . 6
⊢ (𝑦 = 𝑍 → ((𝑋 + 𝑌) ∘ 𝑦) = ((𝑋 + 𝑌) ∘ 𝑍)) |
13 | 11, 12 | eqeq12d 2754 |
. . . . 5
⊢ (𝑦 = 𝑍 → (((𝑋 + 𝑌) + 𝑦) = ((𝑋 + 𝑌) ∘ 𝑦) ↔ ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑌) ∘ 𝑍))) |
14 | | symggrplem.p |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
15 | 10, 13, 14 | vtocl2ga 3514 |
. . . 4
⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑌) ∘ 𝑍)) |
16 | 7, 15 | stoic3 1779 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑌) ∘ 𝑍)) |
17 | | coeq1 5766 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ∘ 𝑦) = (𝑋 ∘ 𝑦)) |
18 | 2, 17 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥 + 𝑦) = (𝑥 ∘ 𝑦) ↔ (𝑋 + 𝑦) = (𝑋 ∘ 𝑦))) |
19 | | coeq2 5767 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑋 ∘ 𝑦) = (𝑋 ∘ 𝑌)) |
20 | 4, 19 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑋 ∘ 𝑦) ↔ (𝑋 + 𝑌) = (𝑋 ∘ 𝑌))) |
21 | 18, 20, 14 | vtocl2ga 3514 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
22 | 21 | 3adant3 1131 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
23 | 22 | coeq1d 5770 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) ∘ 𝑍) = ((𝑋 ∘ 𝑌) ∘ 𝑍)) |
24 | 16, 23 | eqtrd 2778 |
. 2
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 ∘ 𝑌) ∘ 𝑍)) |
25 | | simp1 1135 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
26 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → (𝑥 + 𝑦) = (𝑌 + 𝑦)) |
27 | 26 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝑌 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑌 + 𝑦) ∈ 𝐵)) |
28 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑦 = 𝑍 → (𝑌 + 𝑦) = (𝑌 + 𝑍)) |
29 | 28 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = 𝑍 → ((𝑌 + 𝑦) ∈ 𝐵 ↔ (𝑌 + 𝑍) ∈ 𝐵)) |
30 | 27, 29, 6 | vtocl2ga 3514 |
. . . . 5
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 + 𝑍) ∈ 𝐵) |
31 | 30 | 3adant1 1129 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 + 𝑍) ∈ 𝐵) |
32 | | oveq2 7283 |
. . . . . 6
⊢ (𝑦 = (𝑌 + 𝑍) → (𝑋 + 𝑦) = (𝑋 + (𝑌 + 𝑍))) |
33 | | coeq2 5767 |
. . . . . 6
⊢ (𝑦 = (𝑌 + 𝑍) → (𝑋 ∘ 𝑦) = (𝑋 ∘ (𝑌 + 𝑍))) |
34 | 32, 33 | eqeq12d 2754 |
. . . . 5
⊢ (𝑦 = (𝑌 + 𝑍) → ((𝑋 + 𝑦) = (𝑋 ∘ 𝑦) ↔ (𝑋 + (𝑌 + 𝑍)) = (𝑋 ∘ (𝑌 + 𝑍)))) |
35 | 18, 34, 14 | vtocl2ga 3514 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑌 + 𝑍) ∈ 𝐵) → (𝑋 + (𝑌 + 𝑍)) = (𝑋 ∘ (𝑌 + 𝑍))) |
36 | 25, 31, 35 | syl2anc 584 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 + (𝑌 + 𝑍)) = (𝑋 ∘ (𝑌 + 𝑍))) |
37 | | coeq1 5766 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → (𝑥 ∘ 𝑦) = (𝑌 ∘ 𝑦)) |
38 | 26, 37 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑌 → ((𝑥 + 𝑦) = (𝑥 ∘ 𝑦) ↔ (𝑌 + 𝑦) = (𝑌 ∘ 𝑦))) |
39 | | coeq2 5767 |
. . . . . . 7
⊢ (𝑦 = 𝑍 → (𝑌 ∘ 𝑦) = (𝑌 ∘ 𝑍)) |
40 | 28, 39 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 𝑍 → ((𝑌 + 𝑦) = (𝑌 ∘ 𝑦) ↔ (𝑌 + 𝑍) = (𝑌 ∘ 𝑍))) |
41 | 38, 40, 14 | vtocl2ga 3514 |
. . . . 5
⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 + 𝑍) = (𝑌 ∘ 𝑍)) |
42 | 41 | 3adant1 1129 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 + 𝑍) = (𝑌 ∘ 𝑍)) |
43 | 42 | coeq2d 5771 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∘ (𝑌 + 𝑍)) = (𝑋 ∘ (𝑌 ∘ 𝑍))) |
44 | 36, 43 | eqtrd 2778 |
. 2
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 + (𝑌 + 𝑍)) = (𝑋 ∘ (𝑌 ∘ 𝑍))) |
45 | 1, 24, 44 | 3eqtr4a 2804 |
1
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |