MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlip Structured version   Visualization version   GIF version

Theorem dvlip 25874
Description: A function with derivative bounded by 𝑀 is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dvlip.a (𝜑𝐴 ∈ ℝ)
dvlip.b (𝜑𝐵 ∈ ℝ)
dvlip.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dvlip.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvlip.m (𝜑𝑀 ∈ ℝ)
dvlip.l ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlip ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dvlip
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . . 8 (𝑎 = 𝑌 → (𝐹𝑎) = (𝐹𝑌))
21oveq2d 7385 . . . . . . 7 (𝑎 = 𝑌 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑌)))
32fveq2d 6844 . . . . . 6 (𝑎 = 𝑌 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑌))))
4 oveq2 7377 . . . . . . . 8 (𝑎 = 𝑌 → (𝑏𝑎) = (𝑏𝑌))
54fveq2d 6844 . . . . . . 7 (𝑎 = 𝑌 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑌)))
65oveq2d 7385 . . . . . 6 (𝑎 = 𝑌 → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑏𝑌))))
73, 6breq12d 5115 . . . . 5 (𝑎 = 𝑌 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))))
87imbi2d 340 . . . 4 (𝑎 = 𝑌 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))) ↔ (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))))))
9 fveq2 6840 . . . . . . 7 (𝑏 = 𝑋 → (𝐹𝑏) = (𝐹𝑋))
109fvoveq1d 7391 . . . . . 6 (𝑏 = 𝑋 → (abs‘((𝐹𝑏) − (𝐹𝑌))) = (abs‘((𝐹𝑋) − (𝐹𝑌))))
11 fvoveq1 7392 . . . . . . 7 (𝑏 = 𝑋 → (abs‘(𝑏𝑌)) = (abs‘(𝑋𝑌)))
1211oveq2d 7385 . . . . . 6 (𝑏 = 𝑋 → (𝑀 · (abs‘(𝑏𝑌))) = (𝑀 · (abs‘(𝑋𝑌))))
1310, 12breq12d 5115 . . . . 5 (𝑏 = 𝑋 → ((abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))) ↔ (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
1413imbi2d 340 . . . 4 (𝑏 = 𝑋 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))) ↔ (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))))
15 fveq2 6840 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
16 fveq2 6840 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1715, 16oveqan12d 7388 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑏) − (𝐹𝑎)))
1817fveq2d 6844 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑏) − (𝐹𝑎))))
19 oveq12 7378 . . . . . . . . . 10 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑦𝑥) = (𝑏𝑎))
2019fveq2d 6844 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘(𝑦𝑥)) = (abs‘(𝑏𝑎)))
2120oveq2d 7385 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑏𝑎))))
2218, 21breq12d 5115 . . . . . . 7 ((𝑦 = 𝑏𝑥 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
2322ancoms 458 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
24 fveq2 6840 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
25 fveq2 6840 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
2624, 25oveqan12d 7388 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑎) − (𝐹𝑏)))
2726fveq2d 6844 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
28 oveq12 7378 . . . . . . . . . 10 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑦𝑥) = (𝑎𝑏))
2928fveq2d 6844 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘(𝑦𝑥)) = (abs‘(𝑎𝑏)))
3029oveq2d 7385 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑎𝑏))))
3127, 30breq12d 5115 . . . . . . 7 ((𝑦 = 𝑎𝑥 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
3231ancoms 458 . . . . . 6 ((𝑥 = 𝑏𝑦 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
33 dvlip.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
34 dvlip.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
35 iccssre 13366 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
3633, 34, 35syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
37 dvlip.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
38 cncff 24762 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
3937, 38syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
40 ffvelcdm 7035 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑎 ∈ (𝐴[,]𝐵)) → (𝐹𝑎) ∈ ℂ)
41 ffvelcdm 7035 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝐹𝑏) ∈ ℂ)
4240, 41anim12dan 619 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4339, 42sylan 580 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4443simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑏) ∈ ℂ)
4543simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑎) ∈ ℂ)
4644, 45abssubd 15398 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
47 ax-resscn 11101 . . . . . . . . . . . 12 ℝ ⊆ ℂ
4836, 47sstrdi 3956 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
4948sselda 3943 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐴[,]𝐵)) → 𝑏 ∈ ℂ)
5049adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ ℂ)
5148sselda 3943 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐴[,]𝐵)) → 𝑎 ∈ ℂ)
5251adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ ℂ)
5350, 52abssubd 15398 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘(𝑏𝑎)) = (abs‘(𝑎𝑏)))
5453oveq2d 7385 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑎𝑏))))
5546, 54breq12d 5115 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
5639adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
57 simpr2 1196 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐴[,]𝐵))
5856, 57ffvelcdmd 7039 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑏) ∈ ℂ)
59 simpr1 1195 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐴[,]𝐵))
6056, 59ffvelcdmd 7039 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑎) ∈ ℂ)
6158, 60subeq0ad 11519 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) = 0 ↔ (𝐹𝑏) = (𝐹𝑎)))
6261biimpar 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) = 0)
6362abs00bd 15233 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = 0)
6436adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴[,]𝐵) ⊆ ℝ)
6564, 59sseldd 3944 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
6665rexrd 11200 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ*)
6764, 57sseldd 3944 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
6867rexrd 11200 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ*)
69 ioon0 13308 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
7066, 68, 69syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
71 dvlip.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
7271ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 𝑀 ∈ ℝ)
7367, 65resubcld 11582 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏𝑎) ∈ ℝ)
7473adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑏𝑎) ∈ ℝ)
7533adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ)
7675rexrd 11200 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ*)
7734adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ)
78 elicc2 13348 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
7975, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
8059, 79mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵))
8180simp2d 1143 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴𝑎)
82 iooss1 13317 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8376, 81, 82syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8477rexrd 11200 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ*)
85 elicc2 13348 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8675, 77, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8757, 86mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵))
8887simp3d 1144 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏𝐵)
89 iooss2 13318 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ*𝑏𝐵) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9084, 88, 89syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9183, 90sstrd 3954 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
92 ssn0 4363 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ (𝐴(,)𝐵) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
9391, 92sylan 580 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
94 n0 4312 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
95 0red 11153 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
96 dvf 25784 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
97 dvlip.d . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
9897feq2d 6654 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
9996, 98mpbii 233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
10099ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
101100abscld 15381 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
10271adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 ∈ ℝ)
103100absge0d 15389 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
104 dvlip.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
10595, 101, 102, 103, 104letrd 11307 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
106105ex 412 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
107106exlimdv 1933 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
108107imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
10994, 108sylan2b 594 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
110109adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
11193, 110syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ 𝑀)
112 simpr3 1197 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎𝑏)
11367, 65subge0d 11744 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (0 ≤ (𝑏𝑎) ↔ 𝑎𝑏))
114112, 113mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑏𝑎))
115114adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑏𝑎))
11672, 74, 111, 115mulge0d 11731 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑀 · (𝑏𝑎)))
117116ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ → 0 ≤ (𝑀 · (𝑏𝑎))))
11870, 117sylbird 260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
11967recnd 11178 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℂ)
12065recnd 11178 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℂ)
121119, 120subeq0ad 11519 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑏 = 𝑎))
122 equcom 2018 . . . . . . . . . . . . 13 (𝑏 = 𝑎𝑎 = 𝑏)
123121, 122bitrdi 287 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑎 = 𝑏))
124 0re 11152 . . . . . . . . . . . . . 14 0 ∈ ℝ
12571adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℝ)
126125recnd 11178 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℂ)
127126mul01d 11349 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · 0) = 0)
128127eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 = (𝑀 · 0))
129 eqle 11252 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 = (𝑀 · 0)) → 0 ≤ (𝑀 · 0))
130124, 128, 129sylancr 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · 0))
131 oveq2 7377 . . . . . . . . . . . . . 14 ((𝑏𝑎) = 0 → (𝑀 · (𝑏𝑎)) = (𝑀 · 0))
132131breq2d 5114 . . . . . . . . . . . . 13 ((𝑏𝑎) = 0 → (0 ≤ (𝑀 · (𝑏𝑎)) ↔ 0 ≤ (𝑀 · 0)))
133130, 132syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 → 0 ≤ (𝑀 · (𝑏𝑎))))
134123, 133sylbird 260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 = 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
13565, 67leloed 11293 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑎 = 𝑏)))
136112, 135mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏𝑎 = 𝑏))
137118, 134, 136mpjaod 860 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · (𝑏𝑎)))
138137adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 0 ≤ (𝑀 · (𝑏𝑎)))
13963, 138eqbrtrd 5124 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
14058, 60subcld 11509 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
141140adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
142141abscld 15381 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
143142recnd 11178 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
14473adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℝ)
145144recnd 11178 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℂ)
146136ord 864 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏𝑎 = 𝑏))
147 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
148147eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐹𝑏) = (𝐹𝑎))
149146, 148syl6 35 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏 → (𝐹𝑏) = (𝐹𝑎)))
150149necon1ad 2942 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) ≠ (𝐹𝑎) → 𝑎 < 𝑏))
151150imp 406 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 < 𝑏)
15265adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 ∈ ℝ)
15367adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑏 ∈ ℝ)
154152, 153posdifd 11741 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
155151, 154mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 < (𝑏𝑎))
156155gt0ne0d 11718 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ≠ 0)
157143, 145, 156divrec2d 11938 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
158 iccss2 13354 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
15959, 57, 158syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
160159adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
161160sselda 3943 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → 𝑦 ∈ (𝐴[,]𝐵))
16239ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
163162ffvelcdmda 7038 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ℂ)
164161, 163syldan 591 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (𝐹𝑦) ∈ ℂ)
165140ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
16661necon3bid 2969 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) ≠ 0 ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
167166biimpar 477 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
168167adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
169164, 165, 168divcld 11934 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
170162, 160feqresmpt 6912 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (𝐹𝑦)))
171 eqidd 2730 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))))
172 oveq1 7376 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑦) → (𝑥 / ((𝐹𝑏) − (𝐹𝑎))) = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))
173164, 170, 171, 172fmptco 7083 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
174 ref 15054 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℝ
175174a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ:ℂ⟶ℝ)
176175feqmptd 6911 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ = (𝑥 ∈ ℂ ↦ (ℜ‘𝑥)))
177 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) → (ℜ‘𝑥) = (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
178169, 173, 176, 177fmptco 7083 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
17937adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
180 rescncf 24766 . . . . . . . . . . . . . . . . . 18 ((𝑎[,]𝑏) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ)))
181159, 179, 180sylc 65 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
182181adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
183 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎))))
184183divccncf 24775 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ ∧ ((𝐹𝑏) − (𝐹𝑎)) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
185141, 167, 184syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
186182, 185cncfco 24776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) ∈ ((𝑎[,]𝑏)–cn→ℂ))
187 recncf 24771 . . . . . . . . . . . . . . . 16 ℜ ∈ (ℂ–cn→ℝ)
188187a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ ∈ (ℂ–cn→ℝ))
189186, 188cncfco 24776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
190178, 189eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
19147a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ⊆ ℂ)
192 iccssre 13366 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,]𝑏) ⊆ ℝ)
193152, 153, 192syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ ℝ)
194169recld 15136 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
195194recnd 11178 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℂ)
196 tgioo4 24669 . . . . . . . . . . . . . . . . 17 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
197 eqid 2729 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
198 iccntr 24686 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
19965, 67, 198syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
200199adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
201191, 193, 195, 196, 197, 200dvmptntr 25851 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))))
202 ioossicc 13370 . . . . . . . . . . . . . . . . . . 19 (𝑎(,)𝑏) ⊆ (𝑎[,]𝑏)
203202sseli 3939 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑎[,]𝑏))
204203, 169sylan2 593 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
205 ovexd 7404 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ V)
206 reelprrecn 11136 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ {ℝ, ℂ}
207206a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ∈ {ℝ, ℂ})
208203, 164sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (𝐹𝑦) ∈ ℂ)
20991adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
210209sselda 3943 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → 𝑦 ∈ (𝐴(,)𝐵))
21199ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
212211ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
213210, 212syldan 591 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
21436ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐴[,]𝐵) ⊆ ℝ)
215 ioossre 13344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ⊆ ℝ
216215a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ ℝ)
217197, 196dvres 25788 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑎(,)𝑏) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
218191, 162, 214, 216, 217syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
219 retop 24625 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
220 iooretop 24629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
221 isopn3i 22945 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ Top ∧ (𝑎(,)𝑏) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏))
222219, 220, 221mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏)
223222reseq2i 5936 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏))
224218, 223eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)))
225202, 160sstrid 3955 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴[,]𝐵))
226162, 225feqresmpt 6912 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦)))
227226oveq2d 7385 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))))
22899adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
229228, 91fssresd 6709 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)):(𝑎(,)𝑏)⟶ℂ)
230229feqmptd 6911 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
231230adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
232 fvres 6859 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑎(,)𝑏) → (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
233232mpteq2ia 5197 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦))
234231, 233eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
235224, 227, 2343eqtr3d 2772 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
236207, 208, 213, 235, 141, 167dvmptdivc 25845 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
237204, 205, 236dvmptre 25849 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
238201, 237eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
239238dmeqd 5859 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
240 dmmptg 6203 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V → dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏))
241 fvex 6853 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
242241a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎(,)𝑏) → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V)
243240, 242mprg 3050 . . . . . . . . . . . . . 14 dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏)
244239, 243eqtrdi 2780 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑎(,)𝑏))
245152, 153, 151, 190, 244mvth 25873 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)))
246238fveq1d 6842 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥))
247 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
248247fvoveq1d 7391 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
249 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
250 fvex 6853 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
251248, 249, 250fvmpt 6950 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
252246, 251sylan9eq 2784 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
253 ubicc2 13402 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑏 ∈ (𝑎[,]𝑏))
25466, 68, 112, 253syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
255254ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
25615fvoveq1d 7391 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
257 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
258 fvex 6853 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
259256, 257, 258fvmpt 6950 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
261 lbicc2 13401 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑎 ∈ (𝑎[,]𝑏))
26266, 68, 112, 261syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
263262ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
26424fvoveq1d 7391 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
265 fvex 6853 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
266264, 257, 265fvmpt 6950 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
267263, 266syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
268260, 267oveq12d 7387 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
26958adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑏) ∈ ℂ)
270269, 141, 167divcld 11934 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
27160adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑎) ∈ ℂ)
272271, 141, 167divcld 11934 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
273270, 272resubd 15158 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
274269, 271, 141, 167divsubdird 11973 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
275141, 167dividd 11932 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = 1)
276274, 275eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) = 1)
277276fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = (ℜ‘1))
278 re1 15096 . . . . . . . . . . . . . . . . . . 19 (ℜ‘1) = 1
279277, 278eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
280273, 279eqtr3d 2766 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
281280adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
282268, 281eqtrd 2764 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = 1)
283282oveq1d 7384 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) = (1 / (𝑏𝑎)))
284252, 283eqeq12d 2745 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
285284rexbidva 3155 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
286245, 285mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)))
287209sselda 3943 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ (𝐴(,)𝐵))
288211ffvelcdmda 7038 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
289287, 288syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
290140ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
291167adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
292289, 290, 291divcld 11934 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
293292recld 15136 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
294142adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
295293, 294remulcld 11180 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
296289abscld 15381 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
297125ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑀 ∈ ℝ)
298292abscld 15381 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
299141absge0d 15389 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
300299adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
301292releabsd 15396 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
302293, 298, 294, 300, 301lemul1ad 12098 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
303292, 290absmuld 15399 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
304289, 290, 291divcan1d 11935 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎))) = ((ℝ D 𝐹)‘𝑥))
305304fveq2d 6844 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
306303, 305eqtr3d 2766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
307302, 306breqtrd 5128 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
308104ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
309287, 308syldan 591 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
310295, 296, 297, 307, 309letrd 11307 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
311 oveq1 7376 . . . . . . . . . . . . . 14 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
312311breq1d 5112 . . . . . . . . . . . . 13 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → (((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀 ↔ ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
313310, 312syl5ibcom 245 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
314313rexlimdva 3134 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
315286, 314mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
316157, 315eqbrtrd 5124 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀)
31771ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑀 ∈ ℝ)
318 ledivmul2 12038 . . . . . . . . . 10 (((abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑏𝑎) ∈ ℝ ∧ 0 < (𝑏𝑎))) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
319142, 317, 144, 155, 318syl112anc 1376 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
320316, 319mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
321139, 320pm2.61dane 3012 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
32265, 67, 112abssubge0d 15376 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘(𝑏𝑎)) = (𝑏𝑎))
323322oveq2d 7385 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (𝑏𝑎)))
324321, 323breqtrrd 5130 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
32523, 32, 36, 55, 324wlogle 11687 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
326325expcom 413 . . . 4 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
3278, 14, 326vtocl2ga 3541 . . 3 ((𝑌 ∈ (𝐴[,]𝐵) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
328327ancoms 458 . 2 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
329328impcom 407 1 ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  wss 3911  c0 4292  {cpr 4587   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  (,)cioo 13282  [,]cicc 13285  cre 15039  abscabs 15176  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  Topctop 22756  intcnt 22880  cnccncf 24745   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  dvlipcn  25875  dvlip2  25876  dveq0  25881  dvfsumabs  25905  pige3ALT  26405  lgamgulmlem2  26916
  Copyright terms: Public domain W3C validator