MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlip Structured version   Visualization version   GIF version

Theorem dvlip 25157
Description: A function with derivative bounded by 𝑀 is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dvlip.a (𝜑𝐴 ∈ ℝ)
dvlip.b (𝜑𝐵 ∈ ℝ)
dvlip.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dvlip.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvlip.m (𝜑𝑀 ∈ ℝ)
dvlip.l ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlip ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dvlip
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . . . 8 (𝑎 = 𝑌 → (𝐹𝑎) = (𝐹𝑌))
21oveq2d 7291 . . . . . . 7 (𝑎 = 𝑌 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑌)))
32fveq2d 6778 . . . . . 6 (𝑎 = 𝑌 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑌))))
4 oveq2 7283 . . . . . . . 8 (𝑎 = 𝑌 → (𝑏𝑎) = (𝑏𝑌))
54fveq2d 6778 . . . . . . 7 (𝑎 = 𝑌 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑌)))
65oveq2d 7291 . . . . . 6 (𝑎 = 𝑌 → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑏𝑌))))
73, 6breq12d 5087 . . . . 5 (𝑎 = 𝑌 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))))
87imbi2d 341 . . . 4 (𝑎 = 𝑌 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))) ↔ (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))))))
9 fveq2 6774 . . . . . . 7 (𝑏 = 𝑋 → (𝐹𝑏) = (𝐹𝑋))
109fvoveq1d 7297 . . . . . 6 (𝑏 = 𝑋 → (abs‘((𝐹𝑏) − (𝐹𝑌))) = (abs‘((𝐹𝑋) − (𝐹𝑌))))
11 fvoveq1 7298 . . . . . . 7 (𝑏 = 𝑋 → (abs‘(𝑏𝑌)) = (abs‘(𝑋𝑌)))
1211oveq2d 7291 . . . . . 6 (𝑏 = 𝑋 → (𝑀 · (abs‘(𝑏𝑌))) = (𝑀 · (abs‘(𝑋𝑌))))
1310, 12breq12d 5087 . . . . 5 (𝑏 = 𝑋 → ((abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))) ↔ (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
1413imbi2d 341 . . . 4 (𝑏 = 𝑋 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))) ↔ (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))))
15 fveq2 6774 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
16 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1715, 16oveqan12d 7294 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑏) − (𝐹𝑎)))
1817fveq2d 6778 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑏) − (𝐹𝑎))))
19 oveq12 7284 . . . . . . . . . 10 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑦𝑥) = (𝑏𝑎))
2019fveq2d 6778 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘(𝑦𝑥)) = (abs‘(𝑏𝑎)))
2120oveq2d 7291 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑏𝑎))))
2218, 21breq12d 5087 . . . . . . 7 ((𝑦 = 𝑏𝑥 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
2322ancoms 459 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
24 fveq2 6774 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
25 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
2624, 25oveqan12d 7294 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑎) − (𝐹𝑏)))
2726fveq2d 6778 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
28 oveq12 7284 . . . . . . . . . 10 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑦𝑥) = (𝑎𝑏))
2928fveq2d 6778 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘(𝑦𝑥)) = (abs‘(𝑎𝑏)))
3029oveq2d 7291 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑎𝑏))))
3127, 30breq12d 5087 . . . . . . 7 ((𝑦 = 𝑎𝑥 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
3231ancoms 459 . . . . . 6 ((𝑥 = 𝑏𝑦 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
33 dvlip.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
34 dvlip.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
35 iccssre 13161 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
3633, 34, 35syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
37 dvlip.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
38 cncff 24056 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
3937, 38syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
40 ffvelrn 6959 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑎 ∈ (𝐴[,]𝐵)) → (𝐹𝑎) ∈ ℂ)
41 ffvelrn 6959 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝐹𝑏) ∈ ℂ)
4240, 41anim12dan 619 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4339, 42sylan 580 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4443simprd 496 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑏) ∈ ℂ)
4543simpld 495 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑎) ∈ ℂ)
4644, 45abssubd 15165 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
47 ax-resscn 10928 . . . . . . . . . . . 12 ℝ ⊆ ℂ
4836, 47sstrdi 3933 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
4948sselda 3921 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐴[,]𝐵)) → 𝑏 ∈ ℂ)
5049adantrl 713 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ ℂ)
5148sselda 3921 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐴[,]𝐵)) → 𝑎 ∈ ℂ)
5251adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ ℂ)
5350, 52abssubd 15165 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘(𝑏𝑎)) = (abs‘(𝑎𝑏)))
5453oveq2d 7291 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑎𝑏))))
5546, 54breq12d 5087 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
5639adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
57 simpr2 1194 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐴[,]𝐵))
5856, 57ffvelrnd 6962 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑏) ∈ ℂ)
59 simpr1 1193 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐴[,]𝐵))
6056, 59ffvelrnd 6962 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑎) ∈ ℂ)
6158, 60subeq0ad 11342 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) = 0 ↔ (𝐹𝑏) = (𝐹𝑎)))
6261biimpar 478 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) = 0)
6362abs00bd 15003 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = 0)
6436adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴[,]𝐵) ⊆ ℝ)
6564, 59sseldd 3922 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
6665rexrd 11025 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ*)
6764, 57sseldd 3922 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
6867rexrd 11025 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ*)
69 ioon0 13105 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
7066, 68, 69syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
71 dvlip.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
7271ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 𝑀 ∈ ℝ)
7367, 65resubcld 11403 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏𝑎) ∈ ℝ)
7473adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑏𝑎) ∈ ℝ)
7533adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ)
7675rexrd 11025 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ*)
7734adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ)
78 elicc2 13144 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
7975, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
8059, 79mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵))
8180simp2d 1142 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴𝑎)
82 iooss1 13114 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8376, 81, 82syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8477rexrd 11025 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ*)
85 elicc2 13144 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8675, 77, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8757, 86mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵))
8887simp3d 1143 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏𝐵)
89 iooss2 13115 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ*𝑏𝐵) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9084, 88, 89syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9183, 90sstrd 3931 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
92 ssn0 4334 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ (𝐴(,)𝐵) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
9391, 92sylan 580 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
94 n0 4280 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
95 0red 10978 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
96 dvf 25071 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
97 dvlip.d . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
9897feq2d 6586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
9996, 98mpbii 232 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
10099ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
101100abscld 15148 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
10271adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 ∈ ℝ)
103100absge0d 15156 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
104 dvlip.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
10595, 101, 102, 103, 104letrd 11132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
106105ex 413 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
107106exlimdv 1936 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
108107imp 407 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
10994, 108sylan2b 594 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
110109adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
11193, 110syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ 𝑀)
112 simpr3 1195 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎𝑏)
11367, 65subge0d 11565 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (0 ≤ (𝑏𝑎) ↔ 𝑎𝑏))
114112, 113mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑏𝑎))
115114adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑏𝑎))
11672, 74, 111, 115mulge0d 11552 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑀 · (𝑏𝑎)))
117116ex 413 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ → 0 ≤ (𝑀 · (𝑏𝑎))))
11870, 117sylbird 259 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
11967recnd 11003 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℂ)
12065recnd 11003 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℂ)
121119, 120subeq0ad 11342 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑏 = 𝑎))
122 equcom 2021 . . . . . . . . . . . . 13 (𝑏 = 𝑎𝑎 = 𝑏)
123121, 122bitrdi 287 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑎 = 𝑏))
124 0re 10977 . . . . . . . . . . . . . 14 0 ∈ ℝ
12571adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℝ)
126125recnd 11003 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℂ)
127126mul01d 11174 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · 0) = 0)
128127eqcomd 2744 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 = (𝑀 · 0))
129 eqle 11077 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 = (𝑀 · 0)) → 0 ≤ (𝑀 · 0))
130124, 128, 129sylancr 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · 0))
131 oveq2 7283 . . . . . . . . . . . . . 14 ((𝑏𝑎) = 0 → (𝑀 · (𝑏𝑎)) = (𝑀 · 0))
132131breq2d 5086 . . . . . . . . . . . . 13 ((𝑏𝑎) = 0 → (0 ≤ (𝑀 · (𝑏𝑎)) ↔ 0 ≤ (𝑀 · 0)))
133130, 132syl5ibrcom 246 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 → 0 ≤ (𝑀 · (𝑏𝑎))))
134123, 133sylbird 259 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 = 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
13565, 67leloed 11118 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑎 = 𝑏)))
136112, 135mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏𝑎 = 𝑏))
137118, 134, 136mpjaod 857 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · (𝑏𝑎)))
138137adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 0 ≤ (𝑀 · (𝑏𝑎)))
13963, 138eqbrtrd 5096 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
14058, 60subcld 11332 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
141140adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
142141abscld 15148 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
143142recnd 11003 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
14473adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℝ)
145144recnd 11003 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℂ)
146136ord 861 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏𝑎 = 𝑏))
147 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
148147eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐹𝑏) = (𝐹𝑎))
149146, 148syl6 35 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏 → (𝐹𝑏) = (𝐹𝑎)))
150149necon1ad 2960 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) ≠ (𝐹𝑎) → 𝑎 < 𝑏))
151150imp 407 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 < 𝑏)
15265adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 ∈ ℝ)
15367adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑏 ∈ ℝ)
154152, 153posdifd 11562 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
155151, 154mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 < (𝑏𝑎))
156155gt0ne0d 11539 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ≠ 0)
157143, 145, 156divrec2d 11755 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
158 iccss2 13150 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
15959, 57, 158syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
160159adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
161160sselda 3921 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → 𝑦 ∈ (𝐴[,]𝐵))
16239ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
163162ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ℂ)
164161, 163syldan 591 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (𝐹𝑦) ∈ ℂ)
165140ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
16661necon3bid 2988 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) ≠ 0 ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
167166biimpar 478 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
168167adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
169164, 165, 168divcld 11751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
170162, 160feqresmpt 6838 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (𝐹𝑦)))
171 eqidd 2739 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))))
172 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑦) → (𝑥 / ((𝐹𝑏) − (𝐹𝑎))) = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))
173164, 170, 171, 172fmptco 7001 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
174 ref 14823 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℝ
175174a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ:ℂ⟶ℝ)
176175feqmptd 6837 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ = (𝑥 ∈ ℂ ↦ (ℜ‘𝑥)))
177 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) → (ℜ‘𝑥) = (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
178169, 173, 176, 177fmptco 7001 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
17937adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
180 rescncf 24060 . . . . . . . . . . . . . . . . . 18 ((𝑎[,]𝑏) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ)))
181159, 179, 180sylc 65 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
182181adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
183 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎))))
184183divccncf 24069 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ ∧ ((𝐹𝑏) − (𝐹𝑎)) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
185141, 167, 184syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
186182, 185cncfco 24070 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) ∈ ((𝑎[,]𝑏)–cn→ℂ))
187 recncf 24065 . . . . . . . . . . . . . . . 16 ℜ ∈ (ℂ–cn→ℝ)
188187a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ ∈ (ℂ–cn→ℝ))
189186, 188cncfco 24070 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
190178, 189eqeltrrd 2840 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
19147a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ⊆ ℂ)
192 iccssre 13161 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,]𝑏) ⊆ ℝ)
193152, 153, 192syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ ℝ)
194169recld 14905 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
195194recnd 11003 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℂ)
196 eqid 2738 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
197196tgioo2 23966 . . . . . . . . . . . . . . . . 17 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
198 iccntr 23984 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
19965, 67, 198syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
200199adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
201191, 193, 195, 197, 196, 200dvmptntr 25135 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))))
202 ioossicc 13165 . . . . . . . . . . . . . . . . . . 19 (𝑎(,)𝑏) ⊆ (𝑎[,]𝑏)
203202sseli 3917 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑎[,]𝑏))
204203, 169sylan2 593 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
205 ovexd 7310 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ V)
206 reelprrecn 10963 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ {ℝ, ℂ}
207206a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ∈ {ℝ, ℂ})
208203, 164sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (𝐹𝑦) ∈ ℂ)
20991adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
210209sselda 3921 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → 𝑦 ∈ (𝐴(,)𝐵))
21199ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
212211ffvelrnda 6961 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
213210, 212syldan 591 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
21436ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐴[,]𝐵) ⊆ ℝ)
215 ioossre 13140 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ⊆ ℝ
216215a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ ℝ)
217196, 197dvres 25075 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑎(,)𝑏) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
218191, 162, 214, 216, 217syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
219 retop 23925 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
220 iooretop 23929 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
221 isopn3i 22233 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ Top ∧ (𝑎(,)𝑏) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏))
222219, 220, 221mp2an 689 . . . . . . . . . . . . . . . . . . . . 21 ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏)
223222reseq2i 5888 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏))
224218, 223eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)))
225202, 160sstrid 3932 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴[,]𝐵))
226162, 225feqresmpt 6838 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦)))
227226oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))))
22899adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
229228, 91fssresd 6641 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)):(𝑎(,)𝑏)⟶ℂ)
230229feqmptd 6837 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
231230adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
232 fvres 6793 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑎(,)𝑏) → (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
233232mpteq2ia 5177 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦))
234231, 233eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
235224, 227, 2343eqtr3d 2786 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
236207, 208, 213, 235, 141, 167dvmptdivc 25129 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
237204, 205, 236dvmptre 25133 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
238201, 237eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
239238dmeqd 5814 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
240 dmmptg 6145 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V → dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏))
241 fvex 6787 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
242241a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎(,)𝑏) → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V)
243240, 242mprg 3078 . . . . . . . . . . . . . 14 dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏)
244239, 243eqtrdi 2794 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑎(,)𝑏))
245152, 153, 151, 190, 244mvth 25156 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)))
246238fveq1d 6776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥))
247 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
248247fvoveq1d 7297 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
249 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
250 fvex 6787 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
251248, 249, 250fvmpt 6875 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
252246, 251sylan9eq 2798 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
253 ubicc2 13197 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑏 ∈ (𝑎[,]𝑏))
25466, 68, 112, 253syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
255254ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
25615fvoveq1d 7297 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
257 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
258 fvex 6787 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
259256, 257, 258fvmpt 6875 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
261 lbicc2 13196 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑎 ∈ (𝑎[,]𝑏))
26266, 68, 112, 261syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
263262ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
26424fvoveq1d 7297 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
265 fvex 6787 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
266264, 257, 265fvmpt 6875 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
267263, 266syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
268260, 267oveq12d 7293 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
26958adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑏) ∈ ℂ)
270269, 141, 167divcld 11751 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
27160adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑎) ∈ ℂ)
272271, 141, 167divcld 11751 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
273270, 272resubd 14927 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
274269, 271, 141, 167divsubdird 11790 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
275141, 167dividd 11749 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = 1)
276274, 275eqtr3d 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) = 1)
277276fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = (ℜ‘1))
278 re1 14865 . . . . . . . . . . . . . . . . . . 19 (ℜ‘1) = 1
279277, 278eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
280273, 279eqtr3d 2780 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
281280adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
282268, 281eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = 1)
283282oveq1d 7290 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) = (1 / (𝑏𝑎)))
284252, 283eqeq12d 2754 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
285284rexbidva 3225 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
286245, 285mpbid 231 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)))
287209sselda 3921 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ (𝐴(,)𝐵))
288211ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
289287, 288syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
290140ad2antrr 723 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
291167adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
292289, 290, 291divcld 11751 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
293292recld 14905 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
294142adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
295293, 294remulcld 11005 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
296289abscld 15148 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
297125ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑀 ∈ ℝ)
298292abscld 15148 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
299141absge0d 15156 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
300299adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
301292releabsd 15163 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
302293, 298, 294, 300, 301lemul1ad 11914 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
303292, 290absmuld 15166 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
304289, 290, 291divcan1d 11752 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎))) = ((ℝ D 𝐹)‘𝑥))
305304fveq2d 6778 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
306303, 305eqtr3d 2780 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
307302, 306breqtrd 5100 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
308104ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
309287, 308syldan 591 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
310295, 296, 297, 307, 309letrd 11132 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
311 oveq1 7282 . . . . . . . . . . . . . 14 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
312311breq1d 5084 . . . . . . . . . . . . 13 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → (((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀 ↔ ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
313310, 312syl5ibcom 244 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
314313rexlimdva 3213 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
315286, 314mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
316157, 315eqbrtrd 5096 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀)
31771ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑀 ∈ ℝ)
318 ledivmul2 11854 . . . . . . . . . 10 (((abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑏𝑎) ∈ ℝ ∧ 0 < (𝑏𝑎))) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
319142, 317, 144, 155, 318syl112anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
320316, 319mpbid 231 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
321139, 320pm2.61dane 3032 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
32265, 67, 112abssubge0d 15143 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘(𝑏𝑎)) = (𝑏𝑎))
323322oveq2d 7291 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (𝑏𝑎)))
324321, 323breqtrrd 5102 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
32523, 32, 36, 55, 324wlogle 11508 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
326325expcom 414 . . . 4 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
3278, 14, 326vtocl2ga 3514 . . 3 ((𝑌 ∈ (𝐴[,]𝐵) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
328327ancoms 459 . 2 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
329328impcom 408 1 ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  wss 3887  c0 4256  {cpr 4563   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  (,)cioo 13079  [,]cicc 13082  cre 14808  abscabs 14945  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  Topctop 22042  intcnt 22168  cnccncf 24039   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  dvlipcn  25158  dvlip2  25159  dveq0  25164  dvfsumabs  25187  pige3ALT  25676  lgamgulmlem2  26179
  Copyright terms: Public domain W3C validator