MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlip Structured version   Visualization version   GIF version

Theorem dvlip 25898
Description: A function with derivative bounded by 𝑀 is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dvlip.a (𝜑𝐴 ∈ ℝ)
dvlip.b (𝜑𝐵 ∈ ℝ)
dvlip.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dvlip.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvlip.m (𝜑𝑀 ∈ ℝ)
dvlip.l ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlip ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dvlip
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . . 8 (𝑎 = 𝑌 → (𝐹𝑎) = (𝐹𝑌))
21oveq2d 7403 . . . . . . 7 (𝑎 = 𝑌 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑌)))
32fveq2d 6862 . . . . . 6 (𝑎 = 𝑌 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑌))))
4 oveq2 7395 . . . . . . . 8 (𝑎 = 𝑌 → (𝑏𝑎) = (𝑏𝑌))
54fveq2d 6862 . . . . . . 7 (𝑎 = 𝑌 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑌)))
65oveq2d 7403 . . . . . 6 (𝑎 = 𝑌 → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑏𝑌))))
73, 6breq12d 5120 . . . . 5 (𝑎 = 𝑌 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))))
87imbi2d 340 . . . 4 (𝑎 = 𝑌 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))) ↔ (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))))))
9 fveq2 6858 . . . . . . 7 (𝑏 = 𝑋 → (𝐹𝑏) = (𝐹𝑋))
109fvoveq1d 7409 . . . . . 6 (𝑏 = 𝑋 → (abs‘((𝐹𝑏) − (𝐹𝑌))) = (abs‘((𝐹𝑋) − (𝐹𝑌))))
11 fvoveq1 7410 . . . . . . 7 (𝑏 = 𝑋 → (abs‘(𝑏𝑌)) = (abs‘(𝑋𝑌)))
1211oveq2d 7403 . . . . . 6 (𝑏 = 𝑋 → (𝑀 · (abs‘(𝑏𝑌))) = (𝑀 · (abs‘(𝑋𝑌))))
1310, 12breq12d 5120 . . . . 5 (𝑏 = 𝑋 → ((abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))) ↔ (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
1413imbi2d 340 . . . 4 (𝑏 = 𝑋 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))) ↔ (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))))
15 fveq2 6858 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
16 fveq2 6858 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1715, 16oveqan12d 7406 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑏) − (𝐹𝑎)))
1817fveq2d 6862 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑏) − (𝐹𝑎))))
19 oveq12 7396 . . . . . . . . . 10 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑦𝑥) = (𝑏𝑎))
2019fveq2d 6862 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘(𝑦𝑥)) = (abs‘(𝑏𝑎)))
2120oveq2d 7403 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑏𝑎))))
2218, 21breq12d 5120 . . . . . . 7 ((𝑦 = 𝑏𝑥 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
2322ancoms 458 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
24 fveq2 6858 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
25 fveq2 6858 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
2624, 25oveqan12d 7406 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑎) − (𝐹𝑏)))
2726fveq2d 6862 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
28 oveq12 7396 . . . . . . . . . 10 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑦𝑥) = (𝑎𝑏))
2928fveq2d 6862 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘(𝑦𝑥)) = (abs‘(𝑎𝑏)))
3029oveq2d 7403 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑎𝑏))))
3127, 30breq12d 5120 . . . . . . 7 ((𝑦 = 𝑎𝑥 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
3231ancoms 458 . . . . . 6 ((𝑥 = 𝑏𝑦 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
33 dvlip.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
34 dvlip.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
35 iccssre 13390 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
3633, 34, 35syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
37 dvlip.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
38 cncff 24786 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
3937, 38syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
40 ffvelcdm 7053 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑎 ∈ (𝐴[,]𝐵)) → (𝐹𝑎) ∈ ℂ)
41 ffvelcdm 7053 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝐹𝑏) ∈ ℂ)
4240, 41anim12dan 619 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4339, 42sylan 580 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4443simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑏) ∈ ℂ)
4543simpld 494 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑎) ∈ ℂ)
4644, 45abssubd 15422 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
47 ax-resscn 11125 . . . . . . . . . . . 12 ℝ ⊆ ℂ
4836, 47sstrdi 3959 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
4948sselda 3946 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐴[,]𝐵)) → 𝑏 ∈ ℂ)
5049adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ ℂ)
5148sselda 3946 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐴[,]𝐵)) → 𝑎 ∈ ℂ)
5251adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ ℂ)
5350, 52abssubd 15422 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘(𝑏𝑎)) = (abs‘(𝑎𝑏)))
5453oveq2d 7403 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑎𝑏))))
5546, 54breq12d 5120 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
5639adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
57 simpr2 1196 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐴[,]𝐵))
5856, 57ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑏) ∈ ℂ)
59 simpr1 1195 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐴[,]𝐵))
6056, 59ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑎) ∈ ℂ)
6158, 60subeq0ad 11543 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) = 0 ↔ (𝐹𝑏) = (𝐹𝑎)))
6261biimpar 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) = 0)
6362abs00bd 15257 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = 0)
6436adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴[,]𝐵) ⊆ ℝ)
6564, 59sseldd 3947 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
6665rexrd 11224 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ*)
6764, 57sseldd 3947 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
6867rexrd 11224 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ*)
69 ioon0 13332 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
7066, 68, 69syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
71 dvlip.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
7271ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 𝑀 ∈ ℝ)
7367, 65resubcld 11606 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏𝑎) ∈ ℝ)
7473adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑏𝑎) ∈ ℝ)
7533adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ)
7675rexrd 11224 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ*)
7734adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ)
78 elicc2 13372 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
7975, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
8059, 79mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵))
8180simp2d 1143 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴𝑎)
82 iooss1 13341 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8376, 81, 82syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8477rexrd 11224 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ*)
85 elicc2 13372 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8675, 77, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8757, 86mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵))
8887simp3d 1144 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏𝐵)
89 iooss2 13342 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ*𝑏𝐵) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9084, 88, 89syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9183, 90sstrd 3957 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
92 ssn0 4367 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ (𝐴(,)𝐵) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
9391, 92sylan 580 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
94 n0 4316 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
95 0red 11177 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
96 dvf 25808 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
97 dvlip.d . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
9897feq2d 6672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
9996, 98mpbii 233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
10099ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
101100abscld 15405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
10271adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 ∈ ℝ)
103100absge0d 15413 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
104 dvlip.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
10595, 101, 102, 103, 104letrd 11331 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
106105ex 412 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
107106exlimdv 1933 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
108107imp 406 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
10994, 108sylan2b 594 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
110109adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
11193, 110syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ 𝑀)
112 simpr3 1197 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎𝑏)
11367, 65subge0d 11768 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (0 ≤ (𝑏𝑎) ↔ 𝑎𝑏))
114112, 113mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑏𝑎))
115114adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑏𝑎))
11672, 74, 111, 115mulge0d 11755 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑀 · (𝑏𝑎)))
117116ex 412 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ → 0 ≤ (𝑀 · (𝑏𝑎))))
11870, 117sylbird 260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
11967recnd 11202 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℂ)
12065recnd 11202 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℂ)
121119, 120subeq0ad 11543 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑏 = 𝑎))
122 equcom 2018 . . . . . . . . . . . . 13 (𝑏 = 𝑎𝑎 = 𝑏)
123121, 122bitrdi 287 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑎 = 𝑏))
124 0re 11176 . . . . . . . . . . . . . 14 0 ∈ ℝ
12571adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℝ)
126125recnd 11202 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℂ)
127126mul01d 11373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · 0) = 0)
128127eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 = (𝑀 · 0))
129 eqle 11276 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 = (𝑀 · 0)) → 0 ≤ (𝑀 · 0))
130124, 128, 129sylancr 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · 0))
131 oveq2 7395 . . . . . . . . . . . . . 14 ((𝑏𝑎) = 0 → (𝑀 · (𝑏𝑎)) = (𝑀 · 0))
132131breq2d 5119 . . . . . . . . . . . . 13 ((𝑏𝑎) = 0 → (0 ≤ (𝑀 · (𝑏𝑎)) ↔ 0 ≤ (𝑀 · 0)))
133130, 132syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 → 0 ≤ (𝑀 · (𝑏𝑎))))
134123, 133sylbird 260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 = 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
13565, 67leloed 11317 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑎 = 𝑏)))
136112, 135mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏𝑎 = 𝑏))
137118, 134, 136mpjaod 860 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · (𝑏𝑎)))
138137adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 0 ≤ (𝑀 · (𝑏𝑎)))
13963, 138eqbrtrd 5129 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
14058, 60subcld 11533 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
141140adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
142141abscld 15405 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
143142recnd 11202 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
14473adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℝ)
145144recnd 11202 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℂ)
146136ord 864 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏𝑎 = 𝑏))
147 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
148147eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐹𝑏) = (𝐹𝑎))
149146, 148syl6 35 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏 → (𝐹𝑏) = (𝐹𝑎)))
150149necon1ad 2942 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) ≠ (𝐹𝑎) → 𝑎 < 𝑏))
151150imp 406 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 < 𝑏)
15265adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 ∈ ℝ)
15367adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑏 ∈ ℝ)
154152, 153posdifd 11765 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
155151, 154mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 < (𝑏𝑎))
156155gt0ne0d 11742 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ≠ 0)
157143, 145, 156divrec2d 11962 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
158 iccss2 13378 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
15959, 57, 158syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
160159adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
161160sselda 3946 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → 𝑦 ∈ (𝐴[,]𝐵))
16239ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
163162ffvelcdmda 7056 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ℂ)
164161, 163syldan 591 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (𝐹𝑦) ∈ ℂ)
165140ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
16661necon3bid 2969 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) ≠ 0 ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
167166biimpar 477 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
168167adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
169164, 165, 168divcld 11958 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
170162, 160feqresmpt 6930 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (𝐹𝑦)))
171 eqidd 2730 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))))
172 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑦) → (𝑥 / ((𝐹𝑏) − (𝐹𝑎))) = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))
173164, 170, 171, 172fmptco 7101 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
174 ref 15078 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℝ
175174a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ:ℂ⟶ℝ)
176175feqmptd 6929 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ = (𝑥 ∈ ℂ ↦ (ℜ‘𝑥)))
177 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) → (ℜ‘𝑥) = (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
178169, 173, 176, 177fmptco 7101 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
17937adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
180 rescncf 24790 . . . . . . . . . . . . . . . . . 18 ((𝑎[,]𝑏) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ)))
181159, 179, 180sylc 65 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
182181adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
183 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎))))
184183divccncf 24799 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ ∧ ((𝐹𝑏) − (𝐹𝑎)) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
185141, 167, 184syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
186182, 185cncfco 24800 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) ∈ ((𝑎[,]𝑏)–cn→ℂ))
187 recncf 24795 . . . . . . . . . . . . . . . 16 ℜ ∈ (ℂ–cn→ℝ)
188187a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ ∈ (ℂ–cn→ℝ))
189186, 188cncfco 24800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
190178, 189eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
19147a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ⊆ ℂ)
192 iccssre 13390 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,]𝑏) ⊆ ℝ)
193152, 153, 192syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ ℝ)
194169recld 15160 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
195194recnd 11202 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℂ)
196 tgioo4 24693 . . . . . . . . . . . . . . . . 17 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
197 eqid 2729 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
198 iccntr 24710 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
19965, 67, 198syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
200199adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
201191, 193, 195, 196, 197, 200dvmptntr 25875 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))))
202 ioossicc 13394 . . . . . . . . . . . . . . . . . . 19 (𝑎(,)𝑏) ⊆ (𝑎[,]𝑏)
203202sseli 3942 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑎[,]𝑏))
204203, 169sylan2 593 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
205 ovexd 7422 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ V)
206 reelprrecn 11160 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ {ℝ, ℂ}
207206a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ∈ {ℝ, ℂ})
208203, 164sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (𝐹𝑦) ∈ ℂ)
20991adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
210209sselda 3946 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → 𝑦 ∈ (𝐴(,)𝐵))
21199ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
212211ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
213210, 212syldan 591 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
21436ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐴[,]𝐵) ⊆ ℝ)
215 ioossre 13368 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ⊆ ℝ
216215a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ ℝ)
217197, 196dvres 25812 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑎(,)𝑏) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
218191, 162, 214, 216, 217syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
219 retop 24649 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
220 iooretop 24653 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
221 isopn3i 22969 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ Top ∧ (𝑎(,)𝑏) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏))
222219, 220, 221mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏)
223222reseq2i 5947 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏))
224218, 223eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)))
225202, 160sstrid 3958 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴[,]𝐵))
226162, 225feqresmpt 6930 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦)))
227226oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))))
22899adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
229228, 91fssresd 6727 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)):(𝑎(,)𝑏)⟶ℂ)
230229feqmptd 6929 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
231230adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
232 fvres 6877 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑎(,)𝑏) → (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
233232mpteq2ia 5202 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦))
234231, 233eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
235224, 227, 2343eqtr3d 2772 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
236207, 208, 213, 235, 141, 167dvmptdivc 25869 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
237204, 205, 236dvmptre 25873 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
238201, 237eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
239238dmeqd 5869 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
240 dmmptg 6215 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V → dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏))
241 fvex 6871 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
242241a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎(,)𝑏) → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V)
243240, 242mprg 3050 . . . . . . . . . . . . . 14 dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏)
244239, 243eqtrdi 2780 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑎(,)𝑏))
245152, 153, 151, 190, 244mvth 25897 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)))
246238fveq1d 6860 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥))
247 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
248247fvoveq1d 7409 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
249 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
250 fvex 6871 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
251248, 249, 250fvmpt 6968 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
252246, 251sylan9eq 2784 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
253 ubicc2 13426 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑏 ∈ (𝑎[,]𝑏))
25466, 68, 112, 253syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
255254ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
25615fvoveq1d 7409 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
257 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
258 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
259256, 257, 258fvmpt 6968 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
261 lbicc2 13425 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑎 ∈ (𝑎[,]𝑏))
26266, 68, 112, 261syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
263262ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
26424fvoveq1d 7409 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
265 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
266264, 257, 265fvmpt 6968 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
267263, 266syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
268260, 267oveq12d 7405 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
26958adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑏) ∈ ℂ)
270269, 141, 167divcld 11958 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
27160adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑎) ∈ ℂ)
272271, 141, 167divcld 11958 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
273270, 272resubd 15182 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
274269, 271, 141, 167divsubdird 11997 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
275141, 167dividd 11956 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = 1)
276274, 275eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) = 1)
277276fveq2d 6862 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = (ℜ‘1))
278 re1 15120 . . . . . . . . . . . . . . . . . . 19 (ℜ‘1) = 1
279277, 278eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
280273, 279eqtr3d 2766 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
281280adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
282268, 281eqtrd 2764 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = 1)
283282oveq1d 7402 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) = (1 / (𝑏𝑎)))
284252, 283eqeq12d 2745 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
285284rexbidva 3155 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
286245, 285mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)))
287209sselda 3946 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ (𝐴(,)𝐵))
288211ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
289287, 288syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
290140ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
291167adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
292289, 290, 291divcld 11958 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
293292recld 15160 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
294142adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
295293, 294remulcld 11204 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
296289abscld 15405 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
297125ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑀 ∈ ℝ)
298292abscld 15405 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
299141absge0d 15413 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
300299adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
301292releabsd 15420 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
302293, 298, 294, 300, 301lemul1ad 12122 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
303292, 290absmuld 15423 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
304289, 290, 291divcan1d 11959 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎))) = ((ℝ D 𝐹)‘𝑥))
305304fveq2d 6862 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
306303, 305eqtr3d 2766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
307302, 306breqtrd 5133 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
308104ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
309287, 308syldan 591 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
310295, 296, 297, 307, 309letrd 11331 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
311 oveq1 7394 . . . . . . . . . . . . . 14 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
312311breq1d 5117 . . . . . . . . . . . . 13 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → (((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀 ↔ ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
313310, 312syl5ibcom 245 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
314313rexlimdva 3134 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
315286, 314mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
316157, 315eqbrtrd 5129 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀)
31771ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑀 ∈ ℝ)
318 ledivmul2 12062 . . . . . . . . . 10 (((abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑏𝑎) ∈ ℝ ∧ 0 < (𝑏𝑎))) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
319142, 317, 144, 155, 318syl112anc 1376 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
320316, 319mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
321139, 320pm2.61dane 3012 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
32265, 67, 112abssubge0d 15400 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘(𝑏𝑎)) = (𝑏𝑎))
323322oveq2d 7403 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (𝑏𝑎)))
324321, 323breqtrrd 5135 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
32523, 32, 36, 55, 324wlogle 11711 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
326325expcom 413 . . . 4 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
3278, 14, 326vtocl2ga 3544 . . 3 ((𝑌 ∈ (𝐴[,]𝐵) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
328327ancoms 458 . 2 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
329328impcom 407 1 ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  wss 3914  c0 4296  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  (,)cioo 13306  [,]cicc 13309  cre 15063  abscabs 15200  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  Topctop 22780  intcnt 22904  cnccncf 24769   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvlipcn  25899  dvlip2  25900  dveq0  25905  dvfsumabs  25929  pige3ALT  26429  lgamgulmlem2  26940
  Copyright terms: Public domain W3C validator