MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlip Structured version   Visualization version   GIF version

Theorem dvlip 24692
Description: A function with derivative bounded by 𝑀 is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dvlip.a (𝜑𝐴 ∈ ℝ)
dvlip.b (𝜑𝐵 ∈ ℝ)
dvlip.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dvlip.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvlip.m (𝜑𝑀 ∈ ℝ)
dvlip.l ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlip ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐹   𝑥,𝑀
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dvlip
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6658 . . . . . . . 8 (𝑎 = 𝑌 → (𝐹𝑎) = (𝐹𝑌))
21oveq2d 7166 . . . . . . 7 (𝑎 = 𝑌 → ((𝐹𝑏) − (𝐹𝑎)) = ((𝐹𝑏) − (𝐹𝑌)))
32fveq2d 6662 . . . . . 6 (𝑎 = 𝑌 → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑏) − (𝐹𝑌))))
4 oveq2 7158 . . . . . . . 8 (𝑎 = 𝑌 → (𝑏𝑎) = (𝑏𝑌))
54fveq2d 6662 . . . . . . 7 (𝑎 = 𝑌 → (abs‘(𝑏𝑎)) = (abs‘(𝑏𝑌)))
65oveq2d 7166 . . . . . 6 (𝑎 = 𝑌 → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑏𝑌))))
73, 6breq12d 5045 . . . . 5 (𝑎 = 𝑌 → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))))
87imbi2d 344 . . . 4 (𝑎 = 𝑌 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))) ↔ (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))))))
9 fveq2 6658 . . . . . . 7 (𝑏 = 𝑋 → (𝐹𝑏) = (𝐹𝑋))
109fvoveq1d 7172 . . . . . 6 (𝑏 = 𝑋 → (abs‘((𝐹𝑏) − (𝐹𝑌))) = (abs‘((𝐹𝑋) − (𝐹𝑌))))
11 fvoveq1 7173 . . . . . . 7 (𝑏 = 𝑋 → (abs‘(𝑏𝑌)) = (abs‘(𝑋𝑌)))
1211oveq2d 7166 . . . . . 6 (𝑏 = 𝑋 → (𝑀 · (abs‘(𝑏𝑌))) = (𝑀 · (abs‘(𝑋𝑌))))
1310, 12breq12d 5045 . . . . 5 (𝑏 = 𝑋 → ((abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌))) ↔ (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
1413imbi2d 344 . . . 4 (𝑏 = 𝑋 → ((𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑏𝑌)))) ↔ (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))))
15 fveq2 6658 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
16 fveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1715, 16oveqan12d 7169 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑏) − (𝐹𝑎)))
1817fveq2d 6662 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑏) − (𝐹𝑎))))
19 oveq12 7159 . . . . . . . . . 10 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑦𝑥) = (𝑏𝑎))
2019fveq2d 6662 . . . . . . . . 9 ((𝑦 = 𝑏𝑥 = 𝑎) → (abs‘(𝑦𝑥)) = (abs‘(𝑏𝑎)))
2120oveq2d 7166 . . . . . . . 8 ((𝑦 = 𝑏𝑥 = 𝑎) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑏𝑎))))
2218, 21breq12d 5045 . . . . . . 7 ((𝑦 = 𝑏𝑥 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
2322ancoms 462 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
24 fveq2 6658 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
25 fveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
2624, 25oveqan12d 7169 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑎) − (𝐹𝑏)))
2726fveq2d 6662 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘((𝐹𝑦) − (𝐹𝑥))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
28 oveq12 7159 . . . . . . . . . 10 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑦𝑥) = (𝑎𝑏))
2928fveq2d 6662 . . . . . . . . 9 ((𝑦 = 𝑎𝑥 = 𝑏) → (abs‘(𝑦𝑥)) = (abs‘(𝑎𝑏)))
3029oveq2d 7166 . . . . . . . 8 ((𝑦 = 𝑎𝑥 = 𝑏) → (𝑀 · (abs‘(𝑦𝑥))) = (𝑀 · (abs‘(𝑎𝑏))))
3127, 30breq12d 5045 . . . . . . 7 ((𝑦 = 𝑎𝑥 = 𝑏) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
3231ancoms 462 . . . . . 6 ((𝑥 = 𝑏𝑦 = 𝑎) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑀 · (abs‘(𝑦𝑥))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
33 dvlip.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
34 dvlip.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
35 iccssre 12861 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
3633, 34, 35syl2anc 587 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
37 dvlip.f . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
38 cncff 23594 . . . . . . . . . . 11 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
3937, 38syl 17 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
40 ffvelrn 6840 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑎 ∈ (𝐴[,]𝐵)) → (𝐹𝑎) ∈ ℂ)
41 ffvelrn 6840 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝐹𝑏) ∈ ℂ)
4240, 41anim12dan 621 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℂ ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4339, 42sylan 583 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑎) ∈ ℂ ∧ (𝐹𝑏) ∈ ℂ))
4443simprd 499 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑏) ∈ ℂ)
4543simpld 498 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑎) ∈ ℂ)
4644, 45abssubd 14861 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = (abs‘((𝐹𝑎) − (𝐹𝑏))))
47 ax-resscn 10632 . . . . . . . . . . . 12 ℝ ⊆ ℂ
4836, 47sstrdi 3904 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
4948sselda 3892 . . . . . . . . . 10 ((𝜑𝑏 ∈ (𝐴[,]𝐵)) → 𝑏 ∈ ℂ)
5049adantrl 715 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ ℂ)
5148sselda 3892 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐴[,]𝐵)) → 𝑎 ∈ ℂ)
5251adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ ℂ)
5350, 52abssubd 14861 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘(𝑏𝑎)) = (abs‘(𝑎𝑏)))
5453oveq2d 7166 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (abs‘(𝑎𝑏))))
5546, 54breq12d 5045 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))) ↔ (abs‘((𝐹𝑎) − (𝐹𝑏))) ≤ (𝑀 · (abs‘(𝑎𝑏)))))
5639adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
57 simpr2 1192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐴[,]𝐵))
5856, 57ffvelrnd 6843 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑏) ∈ ℂ)
59 simpr1 1191 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐴[,]𝐵))
6056, 59ffvelrnd 6843 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹𝑎) ∈ ℂ)
6158, 60subeq0ad 11045 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) = 0 ↔ (𝐹𝑏) = (𝐹𝑎)))
6261biimpar 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) = 0)
6362abs00bd 14699 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) = 0)
6436adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴[,]𝐵) ⊆ ℝ)
6564, 59sseldd 3893 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ)
6665rexrd 10729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℝ*)
6764, 57sseldd 3893 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ)
6867rexrd 10729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℝ*)
69 ioon0 12805 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
7066, 68, 69syl2anc 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ ↔ 𝑎 < 𝑏))
71 dvlip.m . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
7271ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 𝑀 ∈ ℝ)
7367, 65resubcld 11106 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏𝑎) ∈ ℝ)
7473adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝑏𝑎) ∈ ℝ)
7533adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ)
7675rexrd 10729 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴 ∈ ℝ*)
7734adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ)
78 elicc2 12844 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
7975, 77, 78syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ (𝐴[,]𝐵) ↔ (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵)))
8059, 79mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 ∈ ℝ ∧ 𝐴𝑎𝑎𝐵))
8180simp2d 1140 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐴𝑎)
82 iooss1 12814 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8376, 81, 82syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝑏))
8477rexrd 10729 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐵 ∈ ℝ*)
85 elicc2 12844 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8675, 77, 85syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ (𝐴[,]𝐵) ↔ (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵)))
8757, 86mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑏 ∈ ℝ ∧ 𝐴𝑏𝑏𝐵))
8887simp3d 1141 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏𝐵)
89 iooss2 12815 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ*𝑏𝐵) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9084, 88, 89syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐴(,)𝑏) ⊆ (𝐴(,)𝐵))
9183, 90sstrd 3902 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
92 ssn0 4296 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ (𝐴(,)𝐵) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
9391, 92sylan 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
94 n0 4245 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵))
95 0red 10682 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
96 dvf 24606 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
97 dvlip.d . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
9897feq2d 6484 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
9996, 98mpbii 236 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
10099ffvelrnda 6842 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
101100abscld 14844 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
10271adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 ∈ ℝ)
103100absge0d 14852 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
104 dvlip.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
10595, 101, 102, 103, 104letrd 10835 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
106105ex 416 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
107106exlimdv 1934 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) → 0 ≤ 𝑀))
108107imp 410 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∃𝑥 𝑥 ∈ (𝐴(,)𝐵)) → 0 ≤ 𝑀)
10994, 108sylan2b 596 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
110109adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐴(,)𝐵) ≠ ∅) → 0 ≤ 𝑀)
11193, 110syldan 594 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ 𝑀)
112 simpr3 1193 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎𝑏)
11367, 65subge0d 11268 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (0 ≤ (𝑏𝑎) ↔ 𝑎𝑏))
114112, 113mpbird 260 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑏𝑎))
115114adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑏𝑎))
11672, 74, 111, 115mulge0d 11255 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝑎(,)𝑏) ≠ ∅) → 0 ≤ (𝑀 · (𝑏𝑎)))
117116ex 416 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑎(,)𝑏) ≠ ∅ → 0 ≤ (𝑀 · (𝑏𝑎))))
11870, 117sylbird 263 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
11967recnd 10707 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ ℂ)
12065recnd 10707 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ ℂ)
121119, 120subeq0ad 11045 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑏 = 𝑎))
122 equcom 2025 . . . . . . . . . . . . 13 (𝑏 = 𝑎𝑎 = 𝑏)
123121, 122bitrdi 290 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 ↔ 𝑎 = 𝑏))
124 0re 10681 . . . . . . . . . . . . . 14 0 ∈ ℝ
12571adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℝ)
126125recnd 10707 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑀 ∈ ℂ)
127126mul01d 10877 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · 0) = 0)
128127eqcomd 2764 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 = (𝑀 · 0))
129 eqle 10780 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 = (𝑀 · 0)) → 0 ≤ (𝑀 · 0))
130124, 128, 129sylancr 590 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · 0))
131 oveq2 7158 . . . . . . . . . . . . . 14 ((𝑏𝑎) = 0 → (𝑀 · (𝑏𝑎)) = (𝑀 · 0))
132131breq2d 5044 . . . . . . . . . . . . 13 ((𝑏𝑎) = 0 → (0 ≤ (𝑀 · (𝑏𝑎)) ↔ 0 ≤ (𝑀 · 0)))
133130, 132syl5ibrcom 250 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝑏𝑎) = 0 → 0 ≤ (𝑀 · (𝑏𝑎))))
134123, 133sylbird 263 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 = 𝑏 → 0 ≤ (𝑀 · (𝑏𝑎))))
13565, 67leloed 10821 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑎 = 𝑏)))
136112, 135mpbid 235 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎 < 𝑏𝑎 = 𝑏))
137118, 134, 136mpjaod 857 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 0 ≤ (𝑀 · (𝑏𝑎)))
138137adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 0 ≤ (𝑀 · (𝑏𝑎)))
13963, 138eqbrtrd 5054 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
14058, 60subcld 11035 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
141140adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
142141abscld 14844 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
143142recnd 10707 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
14473adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℝ)
145144recnd 10707 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ∈ ℂ)
146136ord 861 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏𝑎 = 𝑏))
147 fveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
148147eqcomd 2764 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐹𝑏) = (𝐹𝑎))
149146, 148syl6 35 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (¬ 𝑎 < 𝑏 → (𝐹𝑏) = (𝐹𝑎)))
150149necon1ad 2968 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((𝐹𝑏) ≠ (𝐹𝑎) → 𝑎 < 𝑏))
151150imp 410 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 < 𝑏)
15265adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑎 ∈ ℝ)
15367adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑏 ∈ ℝ)
154152, 153posdifd 11265 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎 < 𝑏 ↔ 0 < (𝑏𝑎)))
155151, 154mpbid 235 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 < (𝑏𝑎))
156155gt0ne0d 11242 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑏𝑎) ≠ 0)
157143, 145, 156divrec2d 11458 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
158 iccss2 12850 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
15959, 57, 158syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
160159adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ (𝐴[,]𝐵))
161160sselda 3892 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → 𝑦 ∈ (𝐴[,]𝐵))
16239ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
163162ffvelrnda 6842 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ℂ)
164161, 163syldan 594 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (𝐹𝑦) ∈ ℂ)
165140ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
16661necon3bid 2995 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (((𝐹𝑏) − (𝐹𝑎)) ≠ 0 ↔ (𝐹𝑏) ≠ (𝐹𝑎)))
167166biimpar 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
168167adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
169164, 165, 168divcld 11454 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
170162, 160feqresmpt 6722 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (𝐹𝑦)))
171 eqidd 2759 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))))
172 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑦) → (𝑥 / ((𝐹𝑏) − (𝐹𝑎))) = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))
173164, 170, 171, 172fmptco 6882 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
174 ref 14519 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℝ
175174a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ:ℂ⟶ℝ)
176175feqmptd 6721 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ = (𝑥 ∈ ℂ ↦ (ℜ‘𝑥)))
177 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) → (ℜ‘𝑥) = (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
178169, 173, 176, 177fmptco 6882 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
17937adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
180 rescncf 23598 . . . . . . . . . . . . . . . . . 18 ((𝑎[,]𝑏) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ)))
181159, 179, 180sylc 65 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
182181adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎[,]𝑏)) ∈ ((𝑎[,]𝑏)–cn→ℂ))
183 eqid 2758 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) = (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎))))
184183divccncf 23607 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ ∧ ((𝐹𝑏) − (𝐹𝑎)) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
185141, 167, 184syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∈ (ℂ–cn→ℂ))
186182, 185cncfco 23608 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏))) ∈ ((𝑎[,]𝑏)–cn→ℂ))
187 recncf 23603 . . . . . . . . . . . . . . . 16 ℜ ∈ (ℂ–cn→ℝ)
188187a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℜ ∈ (ℂ–cn→ℝ))
189186, 188cncfco 23608 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ ∘ ((𝑥 ∈ ℂ ↦ (𝑥 / ((𝐹𝑏) − (𝐹𝑎)))) ∘ (𝐹 ↾ (𝑎[,]𝑏)))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
190178, 189eqeltrrd 2853 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) ∈ ((𝑎[,]𝑏)–cn→ℝ))
19147a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ⊆ ℂ)
192 iccssre 12861 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,]𝑏) ⊆ ℝ)
193152, 153, 192syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎[,]𝑏) ⊆ ℝ)
194169recld 14601 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
195194recnd 10707 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎[,]𝑏)) → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℂ)
196 eqid 2758 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
197196tgioo2 23504 . . . . . . . . . . . . . . . . 17 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
198 iccntr 23522 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
19965, 67, 198syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
200199adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((int‘(topGen‘ran (,)))‘(𝑎[,]𝑏)) = (𝑎(,)𝑏))
201191, 193, 195, 197, 196, 200dvmptntr 24670 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))))
202 ioossicc 12865 . . . . . . . . . . . . . . . . . . 19 (𝑎(,)𝑏) ⊆ (𝑎[,]𝑏)
203202sseli 3888 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑎[,]𝑏))
204203, 169sylan2 595 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
205 ovexd 7185 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))) ∈ V)
206 reelprrecn 10667 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ {ℝ, ℂ}
207206a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ℝ ∈ {ℝ, ℂ})
208203, 164sylan2 595 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → (𝐹𝑦) ∈ ℂ)
20991adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴(,)𝐵))
210209sselda 3892 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → 𝑦 ∈ (𝐴(,)𝐵))
21199ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
212211ffvelrnda 6842 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
213210, 212syldan 594 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑦 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑦) ∈ ℂ)
21436ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐴[,]𝐵) ⊆ ℝ)
215 ioossre 12840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ⊆ ℝ
216215a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ ℝ)
217196, 197dvres 24610 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑎(,)𝑏) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
218191, 162, 214, 216, 217syl22anc 837 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))))
219 retop 23463 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
220 iooretop 23467 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
221 isopn3i 21782 . . . . . . . . . . . . . . . . . . . . . 22 (((topGen‘ran (,)) ∈ Top ∧ (𝑎(,)𝑏) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏))
222219, 220, 221mp2an 691 . . . . . . . . . . . . . . . . . . . . 21 ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏)) = (𝑎(,)𝑏)
223222reseq2i 5820 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏))
224218, 223eqtrdi 2809 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)))
225202, 160sstrid 3903 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝑎(,)𝑏) ⊆ (𝐴[,]𝐵))
226162, 225feqresmpt 6722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹 ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦)))
227226oveq2d 7166 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝐹 ↾ (𝑎(,)𝑏))) = (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))))
22899adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
229228, 91fssresd 6530 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)):(𝑎(,)𝑏)⟶ℂ)
230229feqmptd 6721 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
231230adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)))
232 fvres 6677 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑎(,)𝑏) → (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
233232mpteq2ia 5123 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹) ↾ (𝑎(,)𝑏))‘𝑦)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦))
234231, 233eqtrdi 2809 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D 𝐹) ↾ (𝑎(,)𝑏)) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
235224, 227, 2343eqtr3d 2801 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ ((ℝ D 𝐹)‘𝑦)))
236207, 208, 213, 235, 141, 167dvmptdivc 24664 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ ((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
237204, 205, 236dvmptre 24668 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
238201, 237eqtrd 2793 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
239238dmeqd 5745 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))
240 dmmptg 6071 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V → dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏))
241 fvex 6671 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
242241a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎(,)𝑏) → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V)
243240, 242mprg 3084 . . . . . . . . . . . . . 14 dom (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑎(,)𝑏)
244239, 243eqtrdi 2809 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → dom (ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))) = (𝑎(,)𝑏))
245152, 153, 151, 190, 244mvth 24691 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)))
246238fveq1d 6660 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥))
247 fveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
248247fvoveq1d 7172 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
249 eqid 2758 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
250 fvex 6671 . . . . . . . . . . . . . . . 16 (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
251248, 249, 250fvmpt 6759 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ↦ (ℜ‘(((ℝ D 𝐹)‘𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
252246, 251sylan9eq 2813 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
253 ubicc2 12897 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑏 ∈ (𝑎[,]𝑏))
25466, 68, 112, 253syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
255254ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ (𝑎[,]𝑏))
25615fvoveq1d 7172 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
257 eqid 2758 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))) = (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))
258 fvex 6671 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
259256, 257, 258fvmpt 6759 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) = (ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))))
261 lbicc2 12896 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝑎𝑏) → 𝑎 ∈ (𝑎[,]𝑏))
26266, 68, 112, 261syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
263262ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ (𝑎[,]𝑏))
26424fvoveq1d 7172 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
265 fvex 6671 . . . . . . . . . . . . . . . . . . 19 (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ V
266264, 257, 265fvmpt 6759 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑎[,]𝑏) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
267263, 266syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎) = (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
268260, 267oveq12d 7168 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
26958adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑏) ∈ ℂ)
270269, 141, 167divcld 11454 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
27160adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (𝐹𝑎) ∈ ℂ)
272271, 141, 167divcld 11454 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
273270, 272resubd 14623 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))))
274269, 271, 141, 167divsubdird 11493 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))))
275141, 167dividd 11452 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) − (𝐹𝑎)) / ((𝐹𝑏) − (𝐹𝑎))) = 1)
276274, 275eqtr3d 2795 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎)))) = 1)
277276fveq2d 6662 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = (ℜ‘1))
278 re1 14561 . . . . . . . . . . . . . . . . . . 19 (ℜ‘1) = 1
279277, 278eqtrdi 2809 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (ℜ‘(((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎))) − ((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
280273, 279eqtr3d 2795 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
281280adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘((𝐹𝑏) / ((𝐹𝑏) − (𝐹𝑎)))) − (ℜ‘((𝐹𝑎) / ((𝐹𝑏) − (𝐹𝑎))))) = 1)
282268, 281eqtrd 2793 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) = 1)
283282oveq1d 7165 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) = (1 / (𝑏𝑎)))
284252, 283eqeq12d 2774 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
285284rexbidva 3220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)((ℝ D (𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎))))))‘𝑥) = ((((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑏) − ((𝑦 ∈ (𝑎[,]𝑏) ↦ (ℜ‘((𝐹𝑦) / ((𝐹𝑏) − (𝐹𝑎)))))‘𝑎)) / (𝑏𝑎)) ↔ ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎))))
286245, 285mpbid 235 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)))
287209sselda 3892 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ (𝐴(,)𝐵))
288211ffvelrnda 6842 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
289287, 288syldan 594 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
290140ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ∈ ℂ)
291167adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝐹𝑏) − (𝐹𝑎)) ≠ 0)
292289, 290, 291divcld 11454 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) ∈ ℂ)
293292recld 14601 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
294142adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ)
295293, 294remulcld 10709 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
296289abscld 14844 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
297125ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑀 ∈ ℝ)
298292abscld 14844 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ∈ ℝ)
299141absge0d 14852 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
300299adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 0 ≤ (abs‘((𝐹𝑏) − (𝐹𝑎))))
301292releabsd 14859 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))))
302293, 298, 294, 300, 301lemul1ad 11617 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
303292, 290absmuld 14862 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
304289, 290, 291divcan1d 11455 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎))) = ((ℝ D 𝐹)‘𝑥))
305304fveq2d 6662 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎))) · ((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
306303, 305eqtr3d 2795 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((abs‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = (abs‘((ℝ D 𝐹)‘𝑥)))
307302, 306breqtrd 5058 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ (abs‘((ℝ D 𝐹)‘𝑥)))
308104ad4ant14 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
309287, 308syldan 594 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀)
310295, 296, 297, 307, 309letrd 10835 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
311 oveq1 7157 . . . . . . . . . . . . . 14 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) = ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))))
312311breq1d 5042 . . . . . . . . . . . . 13 ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → (((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀 ↔ ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
313310, 312syl5ibcom 248 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
314313rexlimdva 3208 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (∃𝑥 ∈ (𝑎(,)𝑏)(ℜ‘(((ℝ D 𝐹)‘𝑥) / ((𝐹𝑏) − (𝐹𝑎)))) = (1 / (𝑏𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀))
315286, 314mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((1 / (𝑏𝑎)) · (abs‘((𝐹𝑏) − (𝐹𝑎)))) ≤ 𝑀)
316157, 315eqbrtrd 5054 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → ((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀)
31771ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → 𝑀 ∈ ℝ)
318 ledivmul2 11557 . . . . . . . . . 10 (((abs‘((𝐹𝑏) − (𝐹𝑎))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑏𝑎) ∈ ℝ ∧ 0 < (𝑏𝑎))) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
319142, 317, 144, 155, 318syl112anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (((abs‘((𝐹𝑏) − (𝐹𝑎))) / (𝑏𝑎)) ≤ 𝑀 ↔ (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎))))
320316, 319mpbid 235 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) ∧ (𝐹𝑏) ≠ (𝐹𝑎)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
321139, 320pm2.61dane 3038 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (𝑏𝑎)))
32265, 67, 112abssubge0d 14839 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘(𝑏𝑎)) = (𝑏𝑎))
323322oveq2d 7166 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (𝑀 · (abs‘(𝑏𝑎))) = (𝑀 · (𝑏𝑎)))
324321, 323breqtrrd 5060 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵) ∧ 𝑎𝑏)) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
32523, 32, 36, 55, 324wlogle 11211 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎))))
326325expcom 417 . . . 4 ((𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑏) − (𝐹𝑎))) ≤ (𝑀 · (abs‘(𝑏𝑎)))))
3278, 14, 326vtocl2ga 3493 . . 3 ((𝑌 ∈ (𝐴[,]𝐵) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
328327ancoms 462 . 2 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝜑 → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌)))))
329328impcom 411 1 ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝑋) − (𝐹𝑌))) ≤ (𝑀 · (abs‘(𝑋𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2951  wrex 3071  Vcvv 3409  wss 3858  c0 4225  {cpr 4524   class class class wbr 5032  cmpt 5112  dom cdm 5524  ran crn 5525  cres 5526  ccom 5528  wf 6331  cfv 6335  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  1c1 10576   · cmul 10580  *cxr 10712   < clt 10713  cle 10714  cmin 10908   / cdiv 11335  (,)cioo 12779  [,]cicc 12782  cre 14504  abscabs 14641  TopOpenctopn 16753  topGenctg 16769  fldccnfld 20166  Topctop 21593  intcnt 21717  cnccncf 23577   D cdv 24562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566
This theorem is referenced by:  dvlipcn  24693  dvlip2  24694  dveq0  24699  dvfsumabs  24722  pige3ALT  25211  lgamgulmlem2  25714
  Copyright terms: Public domain W3C validator