Step | Hyp | Ref
| Expression |
1 | | lencl 14164 |
. . 3
⊢ (𝐴 ∈ Word 𝐵 → (♯‘𝐴) ∈
ℕ0) |
2 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑛 = 0 →
((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 0)) |
3 | 2 | imbi1d 341 |
. . . . 5
⊢ (𝑛 = 0 →
(((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = 0 → 𝜑))) |
4 | 3 | ralbidv 3120 |
. . . 4
⊢ (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 0 → 𝜑))) |
5 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 𝑚)) |
6 | 5 | imbi1d 341 |
. . . . 5
⊢ (𝑛 = 𝑚 → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = 𝑚 → 𝜑))) |
7 | 6 | ralbidv 3120 |
. . . 4
⊢ (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑))) |
8 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (𝑚 + 1))) |
9 | 8 | imbi1d 341 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
10 | 9 | ralbidv 3120 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
11 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑛 = (♯‘𝐴) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (♯‘𝐴))) |
12 | 11 | imbi1d 341 |
. . . . 5
⊢ (𝑛 = (♯‘𝐴) → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = (♯‘𝐴) → 𝜑))) |
13 | 12 | ralbidv 3120 |
. . . 4
⊢ (𝑛 = (♯‘𝐴) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑))) |
14 | | hasheq0 14006 |
. . . . . 6
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) |
15 | | wrdind.5 |
. . . . . . 7
⊢ 𝜓 |
16 | | wrdind.1 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
17 | 15, 16 | mpbiri 257 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝜑) |
18 | 14, 17 | syl6bi 252 |
. . . . 5
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 → 𝜑)) |
19 | 18 | rgen 3073 |
. . . 4
⊢
∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 0 → 𝜑) |
20 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚)) |
21 | | wrdind.2 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
22 | 20, 21 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((♯‘𝑥) = 𝑚 → 𝜑) ↔ ((♯‘𝑦) = 𝑚 → 𝜒))) |
23 | 22 | cbvralvw 3372 |
. . . . 5
⊢
(∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑) ↔ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒)) |
24 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Word 𝐵) |
25 | | fzossfz 13334 |
. . . . . . . . . . . . . 14
⊢
(0..^(♯‘𝑥)) ⊆ (0...(♯‘𝑥)) |
26 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) = (𝑚 + 1)) |
27 | | nn0p1nn 12202 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
28 | 27 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 + 1) ∈ ℕ) |
29 | 26, 28 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) ∈
ℕ) |
30 | | fzo0end 13407 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑥)
∈ ℕ → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥))) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈
(0..^(♯‘𝑥))) |
32 | 25, 31 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈
(0...(♯‘𝑥))) |
33 | | pfxlen 14324 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) |
34 | 24, 32, 33 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) |
35 | 26 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) = ((𝑚 + 1) −
1)) |
36 | | nn0cn 12173 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
37 | 36 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑚 ∈ ℂ) |
38 | | ax-1cn 10860 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
39 | | pncan 11157 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) |
40 | 37, 38, 39 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((𝑚 + 1) − 1) = 𝑚) |
41 | 34, 35, 40 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) |
42 | | fveqeq2 6765 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)) |
43 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
44 | 43, 21 | sbcie 3754 |
. . . . . . . . . . . . . 14
⊢
([𝑦 / 𝑥]𝜑 ↔ 𝜒) |
45 | | dfsbcq 3713 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([𝑦 / 𝑥]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) |
46 | 44, 45 | bitr3id 284 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝜒 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) |
47 | 42, 46 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (((♯‘𝑦) = 𝑚 → 𝜒) ↔ ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚 → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))) |
48 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒)) |
49 | | pfxcl 14318 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Word 𝐵 → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵) |
50 | 49 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵) |
51 | 47, 48, 50 | rspcdva 3554 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚 → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) |
52 | 41, 51 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑) |
53 | 29 | nnge1d 11951 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 1 ≤ (♯‘𝑥)) |
54 | | wrdlenge1n0 14181 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Word 𝐵 → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) |
55 | 54 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) |
56 | 53, 55 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅) |
57 | | lswcl 14199 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → (lastS‘𝑥) ∈ 𝐵) |
58 | 24, 56, 57 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (lastS‘𝑥) ∈ 𝐵) |
59 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝑦 ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉)) |
60 | 59 | sbceq1d 3716 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
61 | 45, 60 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑))) |
62 | | s1eq 14233 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (lastS‘𝑥) → 〈“𝑧”〉 =
〈“(lastS‘𝑥)”〉) |
63 | 62 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (lastS‘𝑥) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
64 | 63 | sbceq1d 3716 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (lastS‘𝑥) → ([((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
65 | 64 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑧 = (lastS‘𝑥) → (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑))) |
66 | | wrdind.6 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝜒 → 𝜃)) |
67 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ++ 〈“𝑧”〉) ∈
V |
68 | | wrdind.3 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝜑 ↔ 𝜃)) |
69 | 67, 68 | sbcie 3754 |
. . . . . . . . . . . . 13
⊢
([(𝑦 ++
〈“𝑧”〉) / 𝑥]𝜑 ↔ 𝜃) |
70 | 66, 44, 69 | 3imtr4g 295 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
71 | 61, 65, 70 | vtocl2ga 3504 |
. . . . . . . . . . 11
⊢ (((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵 ∧ (lastS‘𝑥) ∈ 𝐵) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
72 | 50, 58, 71 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
73 | 52, 72 | mpd 15 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑) |
74 | | wrdfin 14163 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Word 𝐵 → 𝑥 ∈ Fin) |
75 | 74 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Fin) |
76 | | hashnncl 14009 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin →
((♯‘𝑥) ∈
ℕ ↔ 𝑥 ≠
∅)) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
78 | 29, 77 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅) |
79 | | pfxlswccat 14354 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) = 𝑥) |
80 | 79 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
81 | 24, 78, 80 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
82 | | sbceq1a 3722 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
83 | 81, 82 | syl 17 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
84 | 73, 83 | mpbird 256 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝜑) |
85 | 84 | expr 456 |
. . . . . . 7
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((♯‘𝑥) = (𝑚 + 1) → 𝜑)) |
86 | 85 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)) |
87 | 86 | ex 412 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ (∀𝑦 ∈
Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
88 | 23, 87 | syl5bi 241 |
. . . 4
⊢ (𝑚 ∈ ℕ0
→ (∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
89 | 4, 7, 10, 13, 19, 88 | nn0ind 12345 |
. . 3
⊢
((♯‘𝐴)
∈ ℕ0 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)) |
90 | 1, 89 | syl 17 |
. 2
⊢ (𝐴 ∈ Word 𝐵 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)) |
91 | | eqidd 2739 |
. 2
⊢ (𝐴 ∈ Word 𝐵 → (♯‘𝐴) = (♯‘𝐴)) |
92 | | fveqeq2 6765 |
. . . 4
⊢ (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐴))) |
93 | | wrdind.4 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
94 | 92, 93 | imbi12d 344 |
. . 3
⊢ (𝑥 = 𝐴 → (((♯‘𝑥) = (♯‘𝐴) → 𝜑) ↔ ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) |
95 | 94 | rspcv 3547 |
. 2
⊢ (𝐴 ∈ Word 𝐵 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) |
96 | 90, 91, 95 | mp2d 49 |
1
⊢ (𝐴 ∈ Word 𝐵 → 𝜏) |