MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdind Structured version   Visualization version   GIF version

Theorem wrdind 14363
Description: Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
Hypotheses
Ref Expression
wrdind.1 (𝑥 = ∅ → (𝜑𝜓))
wrdind.2 (𝑥 = 𝑦 → (𝜑𝜒))
wrdind.3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
wrdind.4 (𝑥 = 𝐴 → (𝜑𝜏))
wrdind.5 𝜓
wrdind.6 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
Assertion
Ref Expression
wrdind (𝐴 ∈ Word 𝐵𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑧,𝐵   𝜒,𝑥   𝜑,𝑦,𝑧   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem wrdind
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 14164 . . 3 (𝐴 ∈ Word 𝐵 → (♯‘𝐴) ∈ ℕ0)
2 eqeq2 2750 . . . . . 6 (𝑛 = 0 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 0))
32imbi1d 341 . . . . 5 (𝑛 = 0 → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = 0 → 𝜑)))
43ralbidv 3120 . . . 4 (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 0 → 𝜑)))
5 eqeq2 2750 . . . . . 6 (𝑛 = 𝑚 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 𝑚))
65imbi1d 341 . . . . 5 (𝑛 = 𝑚 → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = 𝑚𝜑)))
76ralbidv 3120 . . . 4 (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚𝜑)))
8 eqeq2 2750 . . . . . 6 (𝑛 = (𝑚 + 1) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (𝑚 + 1)))
98imbi1d 341 . . . . 5 (𝑛 = (𝑚 + 1) → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
109ralbidv 3120 . . . 4 (𝑛 = (𝑚 + 1) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
11 eqeq2 2750 . . . . . 6 (𝑛 = (♯‘𝐴) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (♯‘𝐴)))
1211imbi1d 341 . . . . 5 (𝑛 = (♯‘𝐴) → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = (♯‘𝐴) → 𝜑)))
1312ralbidv 3120 . . . 4 (𝑛 = (♯‘𝐴) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)))
14 hasheq0 14006 . . . . . 6 (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
15 wrdind.5 . . . . . . 7 𝜓
16 wrdind.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
1715, 16mpbiri 257 . . . . . 6 (𝑥 = ∅ → 𝜑)
1814, 17syl6bi 252 . . . . 5 (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 → 𝜑))
1918rgen 3073 . . . 4 𝑥 ∈ Word 𝐵((♯‘𝑥) = 0 → 𝜑)
20 fveqeq2 6765 . . . . . . 7 (𝑥 = 𝑦 → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚))
21 wrdind.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
2220, 21imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → (((♯‘𝑥) = 𝑚𝜑) ↔ ((♯‘𝑦) = 𝑚𝜒)))
2322cbvralvw 3372 . . . . 5 (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚𝜑) ↔ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒))
24 simprl 767 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Word 𝐵)
25 fzossfz 13334 . . . . . . . . . . . . . 14 (0..^(♯‘𝑥)) ⊆ (0...(♯‘𝑥))
26 simprr 769 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) = (𝑚 + 1))
27 nn0p1nn 12202 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
2827ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 + 1) ∈ ℕ)
2926, 28eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) ∈ ℕ)
30 fzo0end 13407 . . . . . . . . . . . . . . 15 ((♯‘𝑥) ∈ ℕ → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥)))
3129, 30syl 17 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥)))
3225, 31sselid 3915 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥)))
33 pfxlen 14324 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = ((♯‘𝑥) − 1))
3424, 32, 33syl2anc 583 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = ((♯‘𝑥) − 1))
3526oveq1d 7270 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) = ((𝑚 + 1) − 1))
36 nn0cn 12173 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
3736ad2antrr 722 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑚 ∈ ℂ)
38 ax-1cn 10860 . . . . . . . . . . . . 13 1 ∈ ℂ
39 pncan 11157 . . . . . . . . . . . . 13 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
4037, 38, 39sylancl 585 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((𝑚 + 1) − 1) = 𝑚)
4134, 35, 403eqtrd 2782 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)
42 fveqeq2 6765 . . . . . . . . . . . . 13 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚))
43 vex 3426 . . . . . . . . . . . . . . 15 𝑦 ∈ V
4443, 21sbcie 3754 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
45 dfsbcq 3713 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([𝑦 / 𝑥]𝜑[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))
4644, 45bitr3id 284 . . . . . . . . . . . . 13 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝜒[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))
4742, 46imbi12d 344 . . . . . . . . . . . 12 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (((♯‘𝑦) = 𝑚𝜒) ↔ ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)))
48 simplr 765 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒))
49 pfxcl 14318 . . . . . . . . . . . . 13 (𝑥 ∈ Word 𝐵 → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵)
5049ad2antrl 724 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵)
5147, 48, 50rspcdva 3554 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))
5241, 51mpd 15 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)
5329nnge1d 11951 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 1 ≤ (♯‘𝑥))
54 wrdlenge1n0 14181 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵 → (𝑥 ≠ ∅ ↔ 1 ≤ (♯‘𝑥)))
5554ad2antrl 724 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 ≠ ∅ ↔ 1 ≤ (♯‘𝑥)))
5653, 55mpbird 256 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
57 lswcl 14199 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → (lastS‘𝑥) ∈ 𝐵)
5824, 56, 57syl2anc 583 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (lastS‘𝑥) ∈ 𝐵)
59 oveq1 7262 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝑦 ++ ⟨“𝑧”⟩) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩))
6059sbceq1d 3716 . . . . . . . . . . . . 13 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
6145, 60imbi12d 344 . . . . . . . . . . . 12 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑)))
62 s1eq 14233 . . . . . . . . . . . . . . 15 (𝑧 = (lastS‘𝑥) → ⟨“𝑧”⟩ = ⟨“(lastS‘𝑥)”⟩)
6362oveq2d 7271 . . . . . . . . . . . . . 14 (𝑧 = (lastS‘𝑥) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
6463sbceq1d 3716 . . . . . . . . . . . . 13 (𝑧 = (lastS‘𝑥) → ([((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
6564imbi2d 340 . . . . . . . . . . . 12 (𝑧 = (lastS‘𝑥) → (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑)))
66 wrdind.6 . . . . . . . . . . . . 13 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
67 ovex 7288 . . . . . . . . . . . . . 14 (𝑦 ++ ⟨“𝑧”⟩) ∈ V
68 wrdind.3 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
6967, 68sbcie 3754 . . . . . . . . . . . . 13 ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑𝜃)
7066, 44, 693imtr4g 295 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
7161, 65, 70vtocl2ga 3504 . . . . . . . . . . 11 (((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵 ∧ (lastS‘𝑥) ∈ 𝐵) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
7250, 58, 71syl2anc 583 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
7352, 72mpd 15 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑)
74 wrdfin 14163 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵𝑥 ∈ Fin)
7574ad2antrl 724 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Fin)
76 hashnncl 14009 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
7775, 76syl 17 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
7829, 77mpbid 231 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
79 pfxlswccat 14354 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) = 𝑥)
8079eqcomd 2744 . . . . . . . . . . 11 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
8124, 78, 80syl2anc 583 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
82 sbceq1a 3722 . . . . . . . . . 10 (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) → (𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
8381, 82syl 17 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
8473, 83mpbird 256 . . . . . . . 8 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝜑)
8584expr 456 . . . . . . 7 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((♯‘𝑥) = (𝑚 + 1) → 𝜑))
8685ralrimiva 3107 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))
8786ex 412 . . . . 5 (𝑚 ∈ ℕ0 → (∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
8823, 87syl5bi 241 . . . 4 (𝑚 ∈ ℕ0 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚𝜑) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
894, 7, 10, 13, 19, 88nn0ind 12345 . . 3 ((♯‘𝐴) ∈ ℕ0 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑))
901, 89syl 17 . 2 (𝐴 ∈ Word 𝐵 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑))
91 eqidd 2739 . 2 (𝐴 ∈ Word 𝐵 → (♯‘𝐴) = (♯‘𝐴))
92 fveqeq2 6765 . . . 4 (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐴)))
93 wrdind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
9492, 93imbi12d 344 . . 3 (𝑥 = 𝐴 → (((♯‘𝑥) = (♯‘𝐴) → 𝜑) ↔ ((♯‘𝐴) = (♯‘𝐴) → 𝜏)))
9594rspcv 3547 . 2 (𝐴 ∈ Word 𝐵 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏)))
9690, 91, 95mp2d 49 1 (𝐴 ∈ Word 𝐵𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  [wsbc 3711  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cmin 11135  cn 11903  0cn0 12163  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  lastSclsw 14193   ++ cconcat 14201  ⟨“cs1 14228   prefix cpfx 14311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312
This theorem is referenced by:  frmdgsum  18416  gsumwrev  18888  gsmsymgrfix  18951  efginvrel2  19248  signstfvneq0  32451  signstfvc  32453  mrsubvrs  33384
  Copyright terms: Public domain W3C validator