| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lencl 14572 | . . 3
⊢ (𝐴 ∈ Word 𝐵 → (♯‘𝐴) ∈
ℕ0) | 
| 2 |  | eqeq2 2748 | . . . . . 6
⊢ (𝑛 = 0 →
((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 0)) | 
| 3 | 2 | imbi1d 341 | . . . . 5
⊢ (𝑛 = 0 →
(((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = 0 → 𝜑))) | 
| 4 | 3 | ralbidv 3177 | . . . 4
⊢ (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 0 → 𝜑))) | 
| 5 |  | eqeq2 2748 | . . . . . 6
⊢ (𝑛 = 𝑚 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 𝑚)) | 
| 6 | 5 | imbi1d 341 | . . . . 5
⊢ (𝑛 = 𝑚 → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = 𝑚 → 𝜑))) | 
| 7 | 6 | ralbidv 3177 | . . . 4
⊢ (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑))) | 
| 8 |  | eqeq2 2748 | . . . . . 6
⊢ (𝑛 = (𝑚 + 1) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (𝑚 + 1))) | 
| 9 | 8 | imbi1d 341 | . . . . 5
⊢ (𝑛 = (𝑚 + 1) → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = (𝑚 + 1) → 𝜑))) | 
| 10 | 9 | ralbidv 3177 | . . . 4
⊢ (𝑛 = (𝑚 + 1) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) | 
| 11 |  | eqeq2 2748 | . . . . . 6
⊢ (𝑛 = (♯‘𝐴) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (♯‘𝐴))) | 
| 12 | 11 | imbi1d 341 | . . . . 5
⊢ (𝑛 = (♯‘𝐴) → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = (♯‘𝐴) → 𝜑))) | 
| 13 | 12 | ralbidv 3177 | . . . 4
⊢ (𝑛 = (♯‘𝐴) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑))) | 
| 14 |  | hasheq0 14403 | . . . . . 6
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | 
| 15 |  | wrdind.5 | . . . . . . 7
⊢ 𝜓 | 
| 16 |  | wrdind.1 | . . . . . . 7
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | 
| 17 | 15, 16 | mpbiri 258 | . . . . . 6
⊢ (𝑥 = ∅ → 𝜑) | 
| 18 | 14, 17 | biimtrdi 253 | . . . . 5
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 → 𝜑)) | 
| 19 | 18 | rgen 3062 | . . . 4
⊢
∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 0 → 𝜑) | 
| 20 |  | fveqeq2 6914 | . . . . . . 7
⊢ (𝑥 = 𝑦 → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚)) | 
| 21 |  | wrdind.2 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | 
| 22 | 20, 21 | imbi12d 344 | . . . . . 6
⊢ (𝑥 = 𝑦 → (((♯‘𝑥) = 𝑚 → 𝜑) ↔ ((♯‘𝑦) = 𝑚 → 𝜒))) | 
| 23 | 22 | cbvralvw 3236 | . . . . 5
⊢
(∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑) ↔ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒)) | 
| 24 |  | simprl 770 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Word 𝐵) | 
| 25 |  | fzossfz 13719 | . . . . . . . . . . . . . 14
⊢
(0..^(♯‘𝑥)) ⊆ (0...(♯‘𝑥)) | 
| 26 |  | simprr 772 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) = (𝑚 + 1)) | 
| 27 |  | nn0p1nn 12567 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) | 
| 28 | 27 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 + 1) ∈ ℕ) | 
| 29 | 26, 28 | eqeltrd 2840 | . . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) ∈
ℕ) | 
| 30 |  | fzo0end 13798 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝑥)
∈ ℕ → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥))) | 
| 31 | 29, 30 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈
(0..^(♯‘𝑥))) | 
| 32 | 25, 31 | sselid 3980 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈
(0...(♯‘𝑥))) | 
| 33 |  | pfxlen 14722 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) | 
| 34 | 24, 32, 33 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) | 
| 35 | 26 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) = ((𝑚 + 1) −
1)) | 
| 36 |  | nn0cn 12538 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) | 
| 37 | 36 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑚 ∈ ℂ) | 
| 38 |  | ax-1cn 11214 | . . . . . . . . . . . . 13
⊢ 1 ∈
ℂ | 
| 39 |  | pncan 11515 | . . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) | 
| 40 | 37, 38, 39 | sylancl 586 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((𝑚 + 1) − 1) = 𝑚) | 
| 41 | 34, 35, 40 | 3eqtrd 2780 | . . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) | 
| 42 |  | fveqeq2 6914 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)) | 
| 43 |  | vex 3483 | . . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V | 
| 44 | 43, 21 | sbcie 3829 | . . . . . . . . . . . . . 14
⊢
([𝑦 / 𝑥]𝜑 ↔ 𝜒) | 
| 45 |  | dfsbcq 3789 | . . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([𝑦 / 𝑥]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) | 
| 46 | 44, 45 | bitr3id 285 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝜒 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) | 
| 47 | 42, 46 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (((♯‘𝑦) = 𝑚 → 𝜒) ↔ ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚 → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))) | 
| 48 |  | simplr 768 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒)) | 
| 49 |  | pfxcl 14716 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ Word 𝐵 → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵) | 
| 50 | 49 | ad2antrl 728 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵) | 
| 51 | 47, 48, 50 | rspcdva 3622 | . . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚 → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) | 
| 52 | 41, 51 | mpd 15 | . . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑) | 
| 53 | 29 | nnge1d 12315 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 1 ≤ (♯‘𝑥)) | 
| 54 |  | wrdlenge1n0 14589 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Word 𝐵 → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) | 
| 55 | 54 | ad2antrl 728 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) | 
| 56 | 53, 55 | mpbird 257 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅) | 
| 57 |  | lswcl 14607 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → (lastS‘𝑥) ∈ 𝐵) | 
| 58 | 24, 56, 57 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (lastS‘𝑥) ∈ 𝐵) | 
| 59 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝑦 ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉)) | 
| 60 | 59 | sbceq1d 3792 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑)) | 
| 61 | 45, 60 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑))) | 
| 62 |  | s1eq 14639 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = (lastS‘𝑥) → 〈“𝑧”〉 =
〈“(lastS‘𝑥)”〉) | 
| 63 | 62 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (𝑧 = (lastS‘𝑥) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) | 
| 64 | 63 | sbceq1d 3792 | . . . . . . . . . . . . 13
⊢ (𝑧 = (lastS‘𝑥) → ([((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) | 
| 65 | 64 | imbi2d 340 | . . . . . . . . . . . 12
⊢ (𝑧 = (lastS‘𝑥) → (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑))) | 
| 66 |  | wrdind.6 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝜒 → 𝜃)) | 
| 67 |  | ovex 7465 | . . . . . . . . . . . . . 14
⊢ (𝑦 ++ 〈“𝑧”〉) ∈
V | 
| 68 |  | wrdind.3 | . . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝜑 ↔ 𝜃)) | 
| 69 | 67, 68 | sbcie 3829 | . . . . . . . . . . . . 13
⊢
([(𝑦 ++
〈“𝑧”〉) / 𝑥]𝜑 ↔ 𝜃) | 
| 70 | 66, 44, 69 | 3imtr4g 296 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑)) | 
| 71 | 61, 65, 70 | vtocl2ga 3577 | . . . . . . . . . . 11
⊢ (((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵 ∧ (lastS‘𝑥) ∈ 𝐵) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) | 
| 72 | 50, 58, 71 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) | 
| 73 | 52, 72 | mpd 15 | . . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑) | 
| 74 |  | wrdfin 14571 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Word 𝐵 → 𝑥 ∈ Fin) | 
| 75 | 74 | ad2antrl 728 | . . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Fin) | 
| 76 |  | hashnncl 14406 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin →
((♯‘𝑥) ∈
ℕ ↔ 𝑥 ≠
∅)) | 
| 77 | 75, 76 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) | 
| 78 | 29, 77 | mpbid 232 | . . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅) | 
| 79 |  | pfxlswccat 14752 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) = 𝑥) | 
| 80 | 79 | eqcomd 2742 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) | 
| 81 | 24, 78, 80 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) | 
| 82 |  | sbceq1a 3798 | . . . . . . . . . 10
⊢ (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) | 
| 83 | 81, 82 | syl 17 | . . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) | 
| 84 | 73, 83 | mpbird 257 | . . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝜑) | 
| 85 | 84 | expr 456 | . . . . . . 7
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((♯‘𝑥) = (𝑚 + 1) → 𝜑)) | 
| 86 | 85 | ralrimiva 3145 | . . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)) | 
| 87 | 86 | ex 412 | . . . . 5
⊢ (𝑚 ∈ ℕ0
→ (∀𝑦 ∈
Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) | 
| 88 | 23, 87 | biimtrid 242 | . . . 4
⊢ (𝑚 ∈ ℕ0
→ (∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) | 
| 89 | 4, 7, 10, 13, 19, 88 | nn0ind 12715 | . . 3
⊢
((♯‘𝐴)
∈ ℕ0 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)) | 
| 90 | 1, 89 | syl 17 | . 2
⊢ (𝐴 ∈ Word 𝐵 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)) | 
| 91 |  | eqidd 2737 | . 2
⊢ (𝐴 ∈ Word 𝐵 → (♯‘𝐴) = (♯‘𝐴)) | 
| 92 |  | fveqeq2 6914 | . . . 4
⊢ (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐴))) | 
| 93 |  | wrdind.4 | . . . 4
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | 
| 94 | 92, 93 | imbi12d 344 | . . 3
⊢ (𝑥 = 𝐴 → (((♯‘𝑥) = (♯‘𝐴) → 𝜑) ↔ ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) | 
| 95 | 94 | rspcv 3617 | . 2
⊢ (𝐴 ∈ Word 𝐵 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) | 
| 96 | 90, 91, 95 | mp2d 49 | 1
⊢ (𝐴 ∈ Word 𝐵 → 𝜏) |