Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqlem Structured version   Visualization version   GIF version

Theorem cnre2csqlem 33907
Description: Lemma for cnre2csqima 33908. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypotheses
Ref Expression
cnre2csqlem.1 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
cnre2csqlem.2 𝐹 Fn (ℝ × ℝ)
cnre2csqlem.3 𝐺 Fn V
cnre2csqlem.4 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
cnre2csqlem.5 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
Assertion
Ref Expression
cnre2csqlem ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑦)

Proof of Theorem cnre2csqlem
StepHypRef Expression
1 cnre2csqlem.3 . . . . . . 7 𝐺 Fn V
2 ssv 3974 . . . . . . 7 (ℝ × ℝ) ⊆ V
3 fnssres 6644 . . . . . . 7 ((𝐺 Fn V ∧ (ℝ × ℝ) ⊆ V) → (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
41, 2, 3mp2an 692 . . . . . 6 (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
5 elpreima 7033 . . . . . 6 ((𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
64, 5mp1i 13 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
76simplbda 499 . . . 4 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ 𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))
87ex 412 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
9 simp2 1137 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑌 ∈ (ℝ × ℝ))
10 fvres 6880 . . . . . 6 (𝑌 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
119, 10syl 17 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
1211eleq1d 2814 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
13 simp1 1136 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
14 fveq2 6861 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1514eleq1d 2814 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑋) ∈ ℝ))
16 cnre2csqlem.4 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
1715, 16vtoclga 3546 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ × ℝ) → (𝐺𝑋) ∈ ℝ)
1813, 17syl 17 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) ∈ ℝ)
19 simp3 1138 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
2019rpred 13002 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
2118, 20resubcld 11613 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ)
2221rexrd 11231 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ*)
2318, 20readdcld 11210 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ)
2423rexrd 11231 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ*)
25 elioo2 13354 . . . . . . . . 9 ((((𝐺𝑋) − 𝐷) ∈ ℝ* ∧ ((𝐺𝑋) + 𝐷) ∈ ℝ*) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2622, 24, 25syl2anc 584 . . . . . . . 8 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2726biimpa 476 . . . . . . 7 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
2827simp2d 1143 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑋) − 𝐷) < (𝐺𝑌))
2927simp3d 1144 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (𝐺𝑌) < ((𝐺𝑋) + 𝐷))
3028, 29jca 511 . . . . 5 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
3130ex 412 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3212, 31sylbid 240 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
33 fveq2 6861 . . . . . . 7 (𝑥 = 𝑌 → (𝐺𝑥) = (𝐺𝑌))
3433eleq1d 2814 . . . . . 6 (𝑥 = 𝑌 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑌) ∈ ℝ))
3534, 16vtoclga 3546 . . . . 5 (𝑌 ∈ (ℝ × ℝ) → (𝐺𝑌) ∈ ℝ)
369, 35syl 17 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) ∈ ℝ)
37 absdiflt 15291 . . . . 5 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷 ↔ (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3837biimprd 248 . . . 4 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
3936, 18, 20, 38syl3anc 1373 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
408, 32, 393syld 60 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
41 cnre2csqlem.2 . . . . . . 7 𝐹 Fn (ℝ × ℝ)
42 fnfvelrn 7055 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → (𝐹𝑌) ∈ ran 𝐹)
4341, 9, 42sylancr 587 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑌) ∈ ran 𝐹)
44 fnfvelrn 7055 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → (𝐹𝑋) ∈ ran 𝐹)
4541, 13, 44sylancr 587 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑋) ∈ ran 𝐹)
46 fvoveq1 7413 . . . . . . . 8 (𝑥 = (𝐹𝑌) → (𝐻‘(𝑥𝑦)) = (𝐻‘((𝐹𝑌) − 𝑦)))
47 fveq2 6861 . . . . . . . . 9 (𝑥 = (𝐹𝑌) → (𝐻𝑥) = (𝐻‘(𝐹𝑌)))
4847oveq1d 7405 . . . . . . . 8 (𝑥 = (𝐹𝑌) → ((𝐻𝑥) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)))
4946, 48eqeq12d 2746 . . . . . . 7 (𝑥 = (𝐹𝑌) → ((𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦))))
50 oveq2 7398 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → ((𝐹𝑌) − 𝑦) = ((𝐹𝑌) − (𝐹𝑋)))
5150fveq2d 6865 . . . . . . . 8 (𝑦 = (𝐹𝑋) → (𝐻‘((𝐹𝑌) − 𝑦)) = (𝐻‘((𝐹𝑌) − (𝐹𝑋))))
52 fveq2 6861 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → (𝐻𝑦) = (𝐻‘(𝐹𝑋)))
5352oveq2d 7406 . . . . . . . 8 (𝑦 = (𝐹𝑋) → ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5451, 53eqeq12d 2746 . . . . . . 7 (𝑦 = (𝐹𝑋) → ((𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋)))))
55 cnre2csqlem.5 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
5649, 54, 55vtocl2ga 3547 . . . . . 6 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑋) ∈ ran 𝐹) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5743, 45, 56syl2anc 584 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
58 cnre2csqlem.1 . . . . . . . 8 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
5958fveq1i 6862 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = ((𝐻𝐹)‘𝑌)
60 fvco2 6961 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6141, 9, 60sylancr 587 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6259, 11, 613eqtr3a 2789 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) = (𝐻‘(𝐹𝑌)))
6358fveq1i 6862 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = ((𝐻𝐹)‘𝑋)
64 fvres 6880 . . . . . . . 8 (𝑋 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
6513, 64syl 17 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
66 fvco2 6961 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6741, 13, 66sylancr 587 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6863, 65, 673eqtr3a 2789 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) = (𝐻‘(𝐹𝑋)))
6962, 68oveq12d 7408 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) − (𝐺𝑋)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
7057, 69eqtr4d 2768 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐺𝑌) − (𝐺𝑋)))
7170fveq2d 6865 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) = (abs‘((𝐺𝑌) − (𝐺𝑋))))
7271breq1d 5120 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ↔ (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
7340, 72sylibrd 259 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110   × cxp 5639  ccnv 5640  ran crn 5642  cres 5643  cima 5644  ccom 5645   Fn wfn 6509  cfv 6514  (class class class)co 7390  cr 11074   + caddc 11078  *cxr 11214   < clt 11215  cmin 11412  +crp 12958  (,)cioo 13313  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  cnre2csqima  33908
  Copyright terms: Public domain W3C validator