Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqlem Structured version   Visualization version   GIF version

Theorem cnre2csqlem 33909
Description: Lemma for cnre2csqima 33910. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypotheses
Ref Expression
cnre2csqlem.1 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
cnre2csqlem.2 𝐹 Fn (ℝ × ℝ)
cnre2csqlem.3 𝐺 Fn V
cnre2csqlem.4 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
cnre2csqlem.5 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
Assertion
Ref Expression
cnre2csqlem ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑦)

Proof of Theorem cnre2csqlem
StepHypRef Expression
1 cnre2csqlem.3 . . . . . . 7 𝐺 Fn V
2 ssv 4008 . . . . . . 7 (ℝ × ℝ) ⊆ V
3 fnssres 6691 . . . . . . 7 ((𝐺 Fn V ∧ (ℝ × ℝ) ⊆ V) → (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
41, 2, 3mp2an 692 . . . . . 6 (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
5 elpreima 7078 . . . . . 6 ((𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
64, 5mp1i 13 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
76simplbda 499 . . . 4 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ 𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))
87ex 412 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
9 simp2 1138 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑌 ∈ (ℝ × ℝ))
10 fvres 6925 . . . . . 6 (𝑌 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
119, 10syl 17 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
1211eleq1d 2826 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
13 simp1 1137 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
14 fveq2 6906 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1514eleq1d 2826 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑋) ∈ ℝ))
16 cnre2csqlem.4 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
1715, 16vtoclga 3577 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ × ℝ) → (𝐺𝑋) ∈ ℝ)
1813, 17syl 17 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) ∈ ℝ)
19 simp3 1139 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
2019rpred 13077 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
2118, 20resubcld 11691 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ)
2221rexrd 11311 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ*)
2318, 20readdcld 11290 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ)
2423rexrd 11311 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ*)
25 elioo2 13428 . . . . . . . . 9 ((((𝐺𝑋) − 𝐷) ∈ ℝ* ∧ ((𝐺𝑋) + 𝐷) ∈ ℝ*) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2622, 24, 25syl2anc 584 . . . . . . . 8 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2726biimpa 476 . . . . . . 7 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
2827simp2d 1144 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑋) − 𝐷) < (𝐺𝑌))
2927simp3d 1145 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (𝐺𝑌) < ((𝐺𝑋) + 𝐷))
3028, 29jca 511 . . . . 5 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
3130ex 412 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3212, 31sylbid 240 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
33 fveq2 6906 . . . . . . 7 (𝑥 = 𝑌 → (𝐺𝑥) = (𝐺𝑌))
3433eleq1d 2826 . . . . . 6 (𝑥 = 𝑌 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑌) ∈ ℝ))
3534, 16vtoclga 3577 . . . . 5 (𝑌 ∈ (ℝ × ℝ) → (𝐺𝑌) ∈ ℝ)
369, 35syl 17 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) ∈ ℝ)
37 absdiflt 15356 . . . . 5 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷 ↔ (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3837biimprd 248 . . . 4 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
3936, 18, 20, 38syl3anc 1373 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
408, 32, 393syld 60 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
41 cnre2csqlem.2 . . . . . . 7 𝐹 Fn (ℝ × ℝ)
42 fnfvelrn 7100 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → (𝐹𝑌) ∈ ran 𝐹)
4341, 9, 42sylancr 587 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑌) ∈ ran 𝐹)
44 fnfvelrn 7100 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → (𝐹𝑋) ∈ ran 𝐹)
4541, 13, 44sylancr 587 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑋) ∈ ran 𝐹)
46 fvoveq1 7454 . . . . . . . 8 (𝑥 = (𝐹𝑌) → (𝐻‘(𝑥𝑦)) = (𝐻‘((𝐹𝑌) − 𝑦)))
47 fveq2 6906 . . . . . . . . 9 (𝑥 = (𝐹𝑌) → (𝐻𝑥) = (𝐻‘(𝐹𝑌)))
4847oveq1d 7446 . . . . . . . 8 (𝑥 = (𝐹𝑌) → ((𝐻𝑥) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)))
4946, 48eqeq12d 2753 . . . . . . 7 (𝑥 = (𝐹𝑌) → ((𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦))))
50 oveq2 7439 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → ((𝐹𝑌) − 𝑦) = ((𝐹𝑌) − (𝐹𝑋)))
5150fveq2d 6910 . . . . . . . 8 (𝑦 = (𝐹𝑋) → (𝐻‘((𝐹𝑌) − 𝑦)) = (𝐻‘((𝐹𝑌) − (𝐹𝑋))))
52 fveq2 6906 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → (𝐻𝑦) = (𝐻‘(𝐹𝑋)))
5352oveq2d 7447 . . . . . . . 8 (𝑦 = (𝐹𝑋) → ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5451, 53eqeq12d 2753 . . . . . . 7 (𝑦 = (𝐹𝑋) → ((𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋)))))
55 cnre2csqlem.5 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
5649, 54, 55vtocl2ga 3578 . . . . . 6 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑋) ∈ ran 𝐹) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5743, 45, 56syl2anc 584 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
58 cnre2csqlem.1 . . . . . . . 8 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
5958fveq1i 6907 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = ((𝐻𝐹)‘𝑌)
60 fvco2 7006 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6141, 9, 60sylancr 587 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6259, 11, 613eqtr3a 2801 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) = (𝐻‘(𝐹𝑌)))
6358fveq1i 6907 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = ((𝐻𝐹)‘𝑋)
64 fvres 6925 . . . . . . . 8 (𝑋 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
6513, 64syl 17 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
66 fvco2 7006 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6741, 13, 66sylancr 587 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6863, 65, 673eqtr3a 2801 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) = (𝐻‘(𝐹𝑋)))
6962, 68oveq12d 7449 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) − (𝐺𝑋)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
7057, 69eqtr4d 2780 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐺𝑌) − (𝐺𝑋)))
7170fveq2d 6910 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) = (abs‘((𝐺𝑌) − (𝐺𝑋))))
7271breq1d 5153 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ↔ (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
7340, 72sylibrd 259 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951   class class class wbr 5143   × cxp 5683  ccnv 5684  ran crn 5686  cres 5687  cima 5688  ccom 5689   Fn wfn 6556  cfv 6561  (class class class)co 7431  cr 11154   + caddc 11158  *cxr 11294   < clt 11295  cmin 11492  +crp 13034  (,)cioo 13387  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ioo 13391  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  cnre2csqima  33910
  Copyright terms: Public domain W3C validator