Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqlem Structured version   Visualization version   GIF version

Theorem cnre2csqlem 33870
Description: Lemma for cnre2csqima 33871. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypotheses
Ref Expression
cnre2csqlem.1 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
cnre2csqlem.2 𝐹 Fn (ℝ × ℝ)
cnre2csqlem.3 𝐺 Fn V
cnre2csqlem.4 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
cnre2csqlem.5 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
Assertion
Ref Expression
cnre2csqlem ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑦)

Proof of Theorem cnre2csqlem
StepHypRef Expression
1 cnre2csqlem.3 . . . . . . 7 𝐺 Fn V
2 ssv 4019 . . . . . . 7 (ℝ × ℝ) ⊆ V
3 fnssres 6691 . . . . . . 7 ((𝐺 Fn V ∧ (ℝ × ℝ) ⊆ V) → (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
41, 2, 3mp2an 692 . . . . . 6 (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
5 elpreima 7077 . . . . . 6 ((𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
64, 5mp1i 13 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
76simplbda 499 . . . 4 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ 𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))
87ex 412 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
9 simp2 1136 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑌 ∈ (ℝ × ℝ))
10 fvres 6925 . . . . . 6 (𝑌 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
119, 10syl 17 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
1211eleq1d 2823 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
13 simp1 1135 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
14 fveq2 6906 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1514eleq1d 2823 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑋) ∈ ℝ))
16 cnre2csqlem.4 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
1715, 16vtoclga 3576 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ × ℝ) → (𝐺𝑋) ∈ ℝ)
1813, 17syl 17 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) ∈ ℝ)
19 simp3 1137 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
2019rpred 13074 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
2118, 20resubcld 11688 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ)
2221rexrd 11308 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ*)
2318, 20readdcld 11287 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ)
2423rexrd 11308 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ*)
25 elioo2 13424 . . . . . . . . 9 ((((𝐺𝑋) − 𝐷) ∈ ℝ* ∧ ((𝐺𝑋) + 𝐷) ∈ ℝ*) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2622, 24, 25syl2anc 584 . . . . . . . 8 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2726biimpa 476 . . . . . . 7 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
2827simp2d 1142 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑋) − 𝐷) < (𝐺𝑌))
2927simp3d 1143 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (𝐺𝑌) < ((𝐺𝑋) + 𝐷))
3028, 29jca 511 . . . . 5 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
3130ex 412 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3212, 31sylbid 240 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
33 fveq2 6906 . . . . . . 7 (𝑥 = 𝑌 → (𝐺𝑥) = (𝐺𝑌))
3433eleq1d 2823 . . . . . 6 (𝑥 = 𝑌 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑌) ∈ ℝ))
3534, 16vtoclga 3576 . . . . 5 (𝑌 ∈ (ℝ × ℝ) → (𝐺𝑌) ∈ ℝ)
369, 35syl 17 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) ∈ ℝ)
37 absdiflt 15352 . . . . 5 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷 ↔ (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3837biimprd 248 . . . 4 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
3936, 18, 20, 38syl3anc 1370 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
408, 32, 393syld 60 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
41 cnre2csqlem.2 . . . . . . 7 𝐹 Fn (ℝ × ℝ)
42 fnfvelrn 7099 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → (𝐹𝑌) ∈ ran 𝐹)
4341, 9, 42sylancr 587 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑌) ∈ ran 𝐹)
44 fnfvelrn 7099 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → (𝐹𝑋) ∈ ran 𝐹)
4541, 13, 44sylancr 587 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑋) ∈ ran 𝐹)
46 fvoveq1 7453 . . . . . . . 8 (𝑥 = (𝐹𝑌) → (𝐻‘(𝑥𝑦)) = (𝐻‘((𝐹𝑌) − 𝑦)))
47 fveq2 6906 . . . . . . . . 9 (𝑥 = (𝐹𝑌) → (𝐻𝑥) = (𝐻‘(𝐹𝑌)))
4847oveq1d 7445 . . . . . . . 8 (𝑥 = (𝐹𝑌) → ((𝐻𝑥) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)))
4946, 48eqeq12d 2750 . . . . . . 7 (𝑥 = (𝐹𝑌) → ((𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦))))
50 oveq2 7438 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → ((𝐹𝑌) − 𝑦) = ((𝐹𝑌) − (𝐹𝑋)))
5150fveq2d 6910 . . . . . . . 8 (𝑦 = (𝐹𝑋) → (𝐻‘((𝐹𝑌) − 𝑦)) = (𝐻‘((𝐹𝑌) − (𝐹𝑋))))
52 fveq2 6906 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → (𝐻𝑦) = (𝐻‘(𝐹𝑋)))
5352oveq2d 7446 . . . . . . . 8 (𝑦 = (𝐹𝑋) → ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5451, 53eqeq12d 2750 . . . . . . 7 (𝑦 = (𝐹𝑋) → ((𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋)))))
55 cnre2csqlem.5 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
5649, 54, 55vtocl2ga 3577 . . . . . 6 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑋) ∈ ran 𝐹) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5743, 45, 56syl2anc 584 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
58 cnre2csqlem.1 . . . . . . . 8 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
5958fveq1i 6907 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = ((𝐻𝐹)‘𝑌)
60 fvco2 7005 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6141, 9, 60sylancr 587 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6259, 11, 613eqtr3a 2798 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) = (𝐻‘(𝐹𝑌)))
6358fveq1i 6907 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = ((𝐻𝐹)‘𝑋)
64 fvres 6925 . . . . . . . 8 (𝑋 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
6513, 64syl 17 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
66 fvco2 7005 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6741, 13, 66sylancr 587 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6863, 65, 673eqtr3a 2798 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) = (𝐻‘(𝐹𝑋)))
6962, 68oveq12d 7448 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) − (𝐺𝑋)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
7057, 69eqtr4d 2777 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐺𝑌) − (𝐺𝑋)))
7170fveq2d 6910 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) = (abs‘((𝐺𝑌) − (𝐺𝑋))))
7271breq1d 5157 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ↔ (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
7340, 72sylibrd 259 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962   class class class wbr 5147   × cxp 5686  ccnv 5687  ran crn 5689  cres 5690  cima 5691  ccom 5692   Fn wfn 6557  cfv 6562  (class class class)co 7430  cr 11151   + caddc 11155  *cxr 11291   < clt 11292  cmin 11489  +crp 13031  (,)cioo 13383  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ioo 13387  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  cnre2csqima  33871
  Copyright terms: Public domain W3C validator