Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqlem Structured version   Visualization version   GIF version

Theorem cnre2csqlem 31762
Description: Lemma for cnre2csqima 31763. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypotheses
Ref Expression
cnre2csqlem.1 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
cnre2csqlem.2 𝐹 Fn (ℝ × ℝ)
cnre2csqlem.3 𝐺 Fn V
cnre2csqlem.4 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
cnre2csqlem.5 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
Assertion
Ref Expression
cnre2csqlem ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑦)

Proof of Theorem cnre2csqlem
StepHypRef Expression
1 cnre2csqlem.3 . . . . . . 7 𝐺 Fn V
2 ssv 3941 . . . . . . 7 (ℝ × ℝ) ⊆ V
3 fnssres 6539 . . . . . . 7 ((𝐺 Fn V ∧ (ℝ × ℝ) ⊆ V) → (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
41, 2, 3mp2an 688 . . . . . 6 (𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
5 elpreima 6917 . . . . . 6 ((𝐺 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
64, 5mp1i 13 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) ↔ (𝑌 ∈ (ℝ × ℝ) ∧ ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))))
76simplbda 499 . . . 4 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ 𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)))
87ex 412 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
9 simp2 1135 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑌 ∈ (ℝ × ℝ))
10 fvres 6775 . . . . . 6 (𝑌 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
119, 10syl 17 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = (𝐺𝑌))
1211eleq1d 2823 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))))
13 simp1 1134 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
14 fveq2 6756 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1514eleq1d 2823 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑋) ∈ ℝ))
16 cnre2csqlem.4 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ × ℝ) → (𝐺𝑥) ∈ ℝ)
1715, 16vtoclga 3503 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ × ℝ) → (𝐺𝑋) ∈ ℝ)
1813, 17syl 17 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) ∈ ℝ)
19 simp3 1136 . . . . . . . . . . . 12 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
2019rpred 12701 . . . . . . . . . . 11 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ)
2118, 20resubcld 11333 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ)
2221rexrd 10956 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) − 𝐷) ∈ ℝ*)
2318, 20readdcld 10935 . . . . . . . . . 10 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ)
2423rexrd 10956 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑋) + 𝐷) ∈ ℝ*)
25 elioo2 13049 . . . . . . . . 9 ((((𝐺𝑋) − 𝐷) ∈ ℝ* ∧ ((𝐺𝑋) + 𝐷) ∈ ℝ*) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2622, 24, 25syl2anc 583 . . . . . . . 8 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) ↔ ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
2726biimpa 476 . . . . . . 7 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑌) ∈ ℝ ∧ ((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
2827simp2d 1141 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → ((𝐺𝑋) − 𝐷) < (𝐺𝑌))
2927simp3d 1142 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (𝐺𝑌) < ((𝐺𝑋) + 𝐷))
3028, 29jca 511 . . . . 5 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) ∧ (𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)))
3130ex 412 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3212, 31sylbid 239 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (((𝐺 ↾ (ℝ × ℝ))‘𝑌) ∈ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷)) → (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
33 fveq2 6756 . . . . . . 7 (𝑥 = 𝑌 → (𝐺𝑥) = (𝐺𝑌))
3433eleq1d 2823 . . . . . 6 (𝑥 = 𝑌 → ((𝐺𝑥) ∈ ℝ ↔ (𝐺𝑌) ∈ ℝ))
3534, 16vtoclga 3503 . . . . 5 (𝑌 ∈ (ℝ × ℝ) → (𝐺𝑌) ∈ ℝ)
369, 35syl 17 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) ∈ ℝ)
37 absdiflt 14957 . . . . 5 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷 ↔ (((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷))))
3837biimprd 247 . . . 4 (((𝐺𝑌) ∈ ℝ ∧ (𝐺𝑋) ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
3936, 18, 20, 38syl3anc 1369 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((((𝐺𝑋) − 𝐷) < (𝐺𝑌) ∧ (𝐺𝑌) < ((𝐺𝑋) + 𝐷)) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
408, 32, 393syld 60 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
41 cnre2csqlem.2 . . . . . . 7 𝐹 Fn (ℝ × ℝ)
42 fnfvelrn 6940 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → (𝐹𝑌) ∈ ran 𝐹)
4341, 9, 42sylancr 586 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑌) ∈ ran 𝐹)
44 fnfvelrn 6940 . . . . . . 7 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → (𝐹𝑋) ∈ ran 𝐹)
4541, 13, 44sylancr 586 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐹𝑋) ∈ ran 𝐹)
46 fvoveq1 7278 . . . . . . . 8 (𝑥 = (𝐹𝑌) → (𝐻‘(𝑥𝑦)) = (𝐻‘((𝐹𝑌) − 𝑦)))
47 fveq2 6756 . . . . . . . . 9 (𝑥 = (𝐹𝑌) → (𝐻𝑥) = (𝐻‘(𝐹𝑌)))
4847oveq1d 7270 . . . . . . . 8 (𝑥 = (𝐹𝑌) → ((𝐻𝑥) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)))
4946, 48eqeq12d 2754 . . . . . . 7 (𝑥 = (𝐹𝑌) → ((𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦))))
50 oveq2 7263 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → ((𝐹𝑌) − 𝑦) = ((𝐹𝑌) − (𝐹𝑋)))
5150fveq2d 6760 . . . . . . . 8 (𝑦 = (𝐹𝑋) → (𝐻‘((𝐹𝑌) − 𝑦)) = (𝐻‘((𝐹𝑌) − (𝐹𝑋))))
52 fveq2 6756 . . . . . . . . 9 (𝑦 = (𝐹𝑋) → (𝐻𝑦) = (𝐻‘(𝐹𝑋)))
5352oveq2d 7271 . . . . . . . 8 (𝑦 = (𝐹𝑋) → ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5451, 53eqeq12d 2754 . . . . . . 7 (𝑦 = (𝐹𝑋) → ((𝐻‘((𝐹𝑌) − 𝑦)) = ((𝐻‘(𝐹𝑌)) − (𝐻𝑦)) ↔ (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋)))))
55 cnre2csqlem.5 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥𝑦)) = ((𝐻𝑥) − (𝐻𝑦)))
5649, 54, 55vtocl2ga 3504 . . . . . 6 (((𝐹𝑌) ∈ ran 𝐹 ∧ (𝐹𝑋) ∈ ran 𝐹) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
5743, 45, 56syl2anc 583 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
58 cnre2csqlem.1 . . . . . . . 8 (𝐺 ↾ (ℝ × ℝ)) = (𝐻𝐹)
5958fveq1i 6757 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑌) = ((𝐻𝐹)‘𝑌)
60 fvco2 6847 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6141, 9, 60sylancr 586 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑌) = (𝐻‘(𝐹𝑌)))
6259, 11, 613eqtr3a 2803 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑌) = (𝐻‘(𝐹𝑌)))
6358fveq1i 6757 . . . . . . 7 ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = ((𝐻𝐹)‘𝑋)
64 fvres 6775 . . . . . . . 8 (𝑋 ∈ (ℝ × ℝ) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
6513, 64syl 17 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺 ↾ (ℝ × ℝ))‘𝑋) = (𝐺𝑋))
66 fvco2 6847 . . . . . . . 8 ((𝐹 Fn (ℝ × ℝ) ∧ 𝑋 ∈ (ℝ × ℝ)) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6741, 13, 66sylancr 586 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐻𝐹)‘𝑋) = (𝐻‘(𝐹𝑋)))
6863, 65, 673eqtr3a 2803 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐺𝑋) = (𝐻‘(𝐹𝑋)))
6962, 68oveq12d 7273 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐺𝑌) − (𝐺𝑋)) = ((𝐻‘(𝐹𝑌)) − (𝐻‘(𝐹𝑋))))
7057, 69eqtr4d 2781 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝐻‘((𝐹𝑌) − (𝐹𝑋))) = ((𝐺𝑌) − (𝐺𝑋)))
7170fveq2d 6760 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) = (abs‘((𝐺𝑌) − (𝐺𝑋))))
7271breq1d 5080 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷 ↔ (abs‘((𝐺𝑌) − (𝐺𝑋))) < 𝐷))
7340, 72sylibrd 258 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((𝐺 ↾ (ℝ × ℝ)) “ (((𝐺𝑋) − 𝐷)(,)((𝐺𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹𝑌) − (𝐹𝑋)))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070   × cxp 5578  ccnv 5579  ran crn 5581  cres 5582  cima 5583  ccom 5584   Fn wfn 6413  cfv 6418  (class class class)co 7255  cr 10801   + caddc 10805  *cxr 10939   < clt 10940  cmin 11135  +crp 12659  (,)cioo 13008  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  cnre2csqima  31763
  Copyright terms: Public domain W3C validator