MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanenq Structured version   Visualization version   GIF version

Theorem mulcanenq 10920
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanenq ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)

Proof of Theorem mulcanenq
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 ·N 𝑏) = (𝐴 ·N 𝐵))
21opeq1d 4846 . . . . . 6 (𝑏 = 𝐵 → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩)
3 opeq1 4840 . . . . . 6 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
42, 3breq12d 5123 . . . . 5 (𝑏 = 𝐵 → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩))
54imbi2d 340 . . . 4 (𝑏 = 𝐵 → ((𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩)))
6 oveq2 7398 . . . . . . 7 (𝑐 = 𝐶 → (𝐴 ·N 𝑐) = (𝐴 ·N 𝐶))
76opeq2d 4847 . . . . . 6 (𝑐 = 𝐶 → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩)
8 opeq2 4841 . . . . . 6 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
97, 8breq12d 5123 . . . . 5 (𝑐 = 𝐶 → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
109imbi2d 340 . . . 4 (𝑐 = 𝐶 → ((𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)))
11 mulcompi 10856 . . . . . . . . 9 (𝑏 ·N 𝑐) = (𝑐 ·N 𝑏)
1211oveq2i 7401 . . . . . . . 8 (𝐴 ·N (𝑏 ·N 𝑐)) = (𝐴 ·N (𝑐 ·N 𝑏))
13 mulasspi 10857 . . . . . . . 8 ((𝐴 ·N 𝑏) ·N 𝑐) = (𝐴 ·N (𝑏 ·N 𝑐))
14 mulasspi 10857 . . . . . . . 8 ((𝐴 ·N 𝑐) ·N 𝑏) = (𝐴 ·N (𝑐 ·N 𝑏))
1512, 13, 143eqtr4i 2763 . . . . . . 7 ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)
16 mulclpi 10853 . . . . . . . . 9 ((𝐴N𝑏N) → (𝐴 ·N 𝑏) ∈ N)
17163adant3 1132 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑏) ∈ N)
18 mulclpi 10853 . . . . . . . . 9 ((𝐴N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
19183adant2 1131 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
20 3simpc 1150 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝑏N𝑐N))
21 enqbreq 10879 . . . . . . . 8 ((((𝐴 ·N 𝑏) ∈ N ∧ (𝐴 ·N 𝑐) ∈ N) ∧ (𝑏N𝑐N)) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2217, 19, 20, 21syl21anc 837 . . . . . . 7 ((𝐴N𝑏N𝑐N) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2315, 22mpbiri 258 . . . . . 6 ((𝐴N𝑏N𝑐N) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
24233expb 1120 . . . . 5 ((𝐴N ∧ (𝑏N𝑐N)) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
2524expcom 413 . . . 4 ((𝑏N𝑐N) → (𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩))
265, 10, 25vtocl2ga 3547 . . 3 ((𝐵N𝐶N) → (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
2726impcom 407 . 2 ((𝐴N ∧ (𝐵N𝐶N)) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
28273impb 1114 1 ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  (class class class)co 7390  Ncnpi 10804   ·N cmi 10806   ~Q ceq 10811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441  df-omul 8442  df-ni 10832  df-mi 10834  df-enq 10871
This theorem is referenced by:  distrnq  10921  1nqenq  10922  ltexnq  10935
  Copyright terms: Public domain W3C validator