MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanenq Structured version   Visualization version   GIF version

Theorem mulcanenq 10998
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanenq ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)

Proof of Theorem mulcanenq
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 ·N 𝑏) = (𝐴 ·N 𝐵))
21opeq1d 4884 . . . . . 6 (𝑏 = 𝐵 → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩)
3 opeq1 4878 . . . . . 6 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
42, 3breq12d 5161 . . . . 5 (𝑏 = 𝐵 → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩))
54imbi2d 340 . . . 4 (𝑏 = 𝐵 → ((𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩)))
6 oveq2 7439 . . . . . . 7 (𝑐 = 𝐶 → (𝐴 ·N 𝑐) = (𝐴 ·N 𝐶))
76opeq2d 4885 . . . . . 6 (𝑐 = 𝐶 → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩)
8 opeq2 4879 . . . . . 6 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
97, 8breq12d 5161 . . . . 5 (𝑐 = 𝐶 → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
109imbi2d 340 . . . 4 (𝑐 = 𝐶 → ((𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)))
11 mulcompi 10934 . . . . . . . . 9 (𝑏 ·N 𝑐) = (𝑐 ·N 𝑏)
1211oveq2i 7442 . . . . . . . 8 (𝐴 ·N (𝑏 ·N 𝑐)) = (𝐴 ·N (𝑐 ·N 𝑏))
13 mulasspi 10935 . . . . . . . 8 ((𝐴 ·N 𝑏) ·N 𝑐) = (𝐴 ·N (𝑏 ·N 𝑐))
14 mulasspi 10935 . . . . . . . 8 ((𝐴 ·N 𝑐) ·N 𝑏) = (𝐴 ·N (𝑐 ·N 𝑏))
1512, 13, 143eqtr4i 2773 . . . . . . 7 ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)
16 mulclpi 10931 . . . . . . . . 9 ((𝐴N𝑏N) → (𝐴 ·N 𝑏) ∈ N)
17163adant3 1131 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑏) ∈ N)
18 mulclpi 10931 . . . . . . . . 9 ((𝐴N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
19183adant2 1130 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
20 3simpc 1149 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝑏N𝑐N))
21 enqbreq 10957 . . . . . . . 8 ((((𝐴 ·N 𝑏) ∈ N ∧ (𝐴 ·N 𝑐) ∈ N) ∧ (𝑏N𝑐N)) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2217, 19, 20, 21syl21anc 838 . . . . . . 7 ((𝐴N𝑏N𝑐N) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2315, 22mpbiri 258 . . . . . 6 ((𝐴N𝑏N𝑐N) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
24233expb 1119 . . . . 5 ((𝐴N ∧ (𝑏N𝑐N)) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
2524expcom 413 . . . 4 ((𝑏N𝑐N) → (𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩))
265, 10, 25vtocl2ga 3578 . . 3 ((𝐵N𝐶N) → (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
2726impcom 407 . 2 ((𝐴N ∧ (𝐵N𝐶N)) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
28273impb 1114 1 ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cop 4637   class class class wbr 5148  (class class class)co 7431  Ncnpi 10882   ·N cmi 10884   ~Q ceq 10889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-oadd 8509  df-omul 8510  df-ni 10910  df-mi 10912  df-enq 10949
This theorem is referenced by:  distrnq  10999  1nqenq  11000  ltexnq  11013
  Copyright terms: Public domain W3C validator