MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanenq Structured version   Visualization version   GIF version

Theorem mulcanenq 10896
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanenq ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)

Proof of Theorem mulcanenq
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 ·N 𝑏) = (𝐴 ·N 𝐵))
21opeq1d 4836 . . . . . 6 (𝑏 = 𝐵 → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩)
3 opeq1 4830 . . . . . 6 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
42, 3breq12d 5118 . . . . 5 (𝑏 = 𝐵 → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩))
54imbi2d 340 . . . 4 (𝑏 = 𝐵 → ((𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩)))
6 oveq2 7365 . . . . . . 7 (𝑐 = 𝐶 → (𝐴 ·N 𝑐) = (𝐴 ·N 𝐶))
76opeq2d 4837 . . . . . 6 (𝑐 = 𝐶 → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩)
8 opeq2 4831 . . . . . 6 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
97, 8breq12d 5118 . . . . 5 (𝑐 = 𝐶 → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
109imbi2d 340 . . . 4 (𝑐 = 𝐶 → ((𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)))
11 mulcompi 10832 . . . . . . . . 9 (𝑏 ·N 𝑐) = (𝑐 ·N 𝑏)
1211oveq2i 7368 . . . . . . . 8 (𝐴 ·N (𝑏 ·N 𝑐)) = (𝐴 ·N (𝑐 ·N 𝑏))
13 mulasspi 10833 . . . . . . . 8 ((𝐴 ·N 𝑏) ·N 𝑐) = (𝐴 ·N (𝑏 ·N 𝑐))
14 mulasspi 10833 . . . . . . . 8 ((𝐴 ·N 𝑐) ·N 𝑏) = (𝐴 ·N (𝑐 ·N 𝑏))
1512, 13, 143eqtr4i 2774 . . . . . . 7 ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)
16 mulclpi 10829 . . . . . . . . 9 ((𝐴N𝑏N) → (𝐴 ·N 𝑏) ∈ N)
17163adant3 1132 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑏) ∈ N)
18 mulclpi 10829 . . . . . . . . 9 ((𝐴N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
19183adant2 1131 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
20 3simpc 1150 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝑏N𝑐N))
21 enqbreq 10855 . . . . . . . 8 ((((𝐴 ·N 𝑏) ∈ N ∧ (𝐴 ·N 𝑐) ∈ N) ∧ (𝑏N𝑐N)) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2217, 19, 20, 21syl21anc 836 . . . . . . 7 ((𝐴N𝑏N𝑐N) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2315, 22mpbiri 257 . . . . . 6 ((𝐴N𝑏N𝑐N) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
24233expb 1120 . . . . 5 ((𝐴N ∧ (𝑏N𝑐N)) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
2524expcom 414 . . . 4 ((𝑏N𝑐N) → (𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩))
265, 10, 25vtocl2ga 3535 . . 3 ((𝐵N𝐶N) → (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
2726impcom 408 . 2 ((𝐴N ∧ (𝐵N𝐶N)) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
28273impb 1115 1 ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4592   class class class wbr 5105  (class class class)co 7357  Ncnpi 10780   ·N cmi 10782   ~Q ceq 10787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-oadd 8416  df-omul 8417  df-ni 10808  df-mi 10810  df-enq 10847
This theorem is referenced by:  distrnq  10897  1nqenq  10898  ltexnq  10911
  Copyright terms: Public domain W3C validator