MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanenq Structured version   Visualization version   GIF version

Theorem mulcanenq 10974
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanenq ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)

Proof of Theorem mulcanenq
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . . . 7 (𝑏 = 𝐵 → (𝐴 ·N 𝑏) = (𝐴 ·N 𝐵))
21opeq1d 4855 . . . . . 6 (𝑏 = 𝐵 → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩)
3 opeq1 4849 . . . . . 6 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
42, 3breq12d 5132 . . . . 5 (𝑏 = 𝐵 → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩))
54imbi2d 340 . . . 4 (𝑏 = 𝐵 → ((𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩)))
6 oveq2 7413 . . . . . . 7 (𝑐 = 𝐶 → (𝐴 ·N 𝑐) = (𝐴 ·N 𝐶))
76opeq2d 4856 . . . . . 6 (𝑐 = 𝐶 → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ = ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩)
8 opeq2 4850 . . . . . 6 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
97, 8breq12d 5132 . . . . 5 (𝑐 = 𝐶 → (⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩ ↔ ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
109imbi2d 340 . . . 4 (𝑐 = 𝐶 → ((𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝑐)⟩ ~Q𝐵, 𝑐⟩) ↔ (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)))
11 mulcompi 10910 . . . . . . . . 9 (𝑏 ·N 𝑐) = (𝑐 ·N 𝑏)
1211oveq2i 7416 . . . . . . . 8 (𝐴 ·N (𝑏 ·N 𝑐)) = (𝐴 ·N (𝑐 ·N 𝑏))
13 mulasspi 10911 . . . . . . . 8 ((𝐴 ·N 𝑏) ·N 𝑐) = (𝐴 ·N (𝑏 ·N 𝑐))
14 mulasspi 10911 . . . . . . . 8 ((𝐴 ·N 𝑐) ·N 𝑏) = (𝐴 ·N (𝑐 ·N 𝑏))
1512, 13, 143eqtr4i 2768 . . . . . . 7 ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)
16 mulclpi 10907 . . . . . . . . 9 ((𝐴N𝑏N) → (𝐴 ·N 𝑏) ∈ N)
17163adant3 1132 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑏) ∈ N)
18 mulclpi 10907 . . . . . . . . 9 ((𝐴N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
19183adant2 1131 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝐴 ·N 𝑐) ∈ N)
20 3simpc 1150 . . . . . . . 8 ((𝐴N𝑏N𝑐N) → (𝑏N𝑐N))
21 enqbreq 10933 . . . . . . . 8 ((((𝐴 ·N 𝑏) ∈ N ∧ (𝐴 ·N 𝑐) ∈ N) ∧ (𝑏N𝑐N)) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2217, 19, 20, 21syl21anc 837 . . . . . . 7 ((𝐴N𝑏N𝑐N) → (⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩ ↔ ((𝐴 ·N 𝑏) ·N 𝑐) = ((𝐴 ·N 𝑐) ·N 𝑏)))
2315, 22mpbiri 258 . . . . . 6 ((𝐴N𝑏N𝑐N) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
24233expb 1120 . . . . 5 ((𝐴N ∧ (𝑏N𝑐N)) → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩)
2524expcom 413 . . . 4 ((𝑏N𝑐N) → (𝐴N → ⟨(𝐴 ·N 𝑏), (𝐴 ·N 𝑐)⟩ ~Q𝑏, 𝑐⟩))
265, 10, 25vtocl2ga 3557 . . 3 ((𝐵N𝐶N) → (𝐴N → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩))
2726impcom 407 . 2 ((𝐴N ∧ (𝐵N𝐶N)) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
28273impb 1114 1 ((𝐴N𝐵N𝐶N) → ⟨(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)⟩ ~Q𝐵, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  (class class class)co 7405  Ncnpi 10858   ·N cmi 10860   ~Q ceq 10865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484  df-omul 8485  df-ni 10886  df-mi 10888  df-enq 10925
This theorem is referenced by:  distrnq  10975  1nqenq  10976  ltexnq  10989
  Copyright terms: Public domain W3C validator