Proof of Theorem vtoclr
Step | Hyp | Ref
| Expression |
1 | | vtoclr.1 |
. . . . 5
⊢ Rel 𝑅 |
2 | 1 | brrelex12i 5633 |
. . . 4
⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | 1 | brrelex2i 5635 |
. . . 4
⊢ (𝐵𝑅𝐶 → 𝐶 ∈ V) |
4 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) |
5 | 4 | anbi1d 629 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) ↔ (𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶))) |
6 | | breq1 5073 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥𝑅𝐶 ↔ 𝐴𝑅𝐶)) |
7 | 5, 6 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶) ↔ ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶))) |
8 | 7 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐶 ∈ V → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶)))) |
9 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) |
10 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
11 | 9, 10 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶))) |
12 | 11 | imbi1d 341 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶) ↔ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
13 | 12 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐶 ∈ V → ((𝐴𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝐴𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)))) |
14 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑧 = 𝐶 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝐶)) |
15 | 14 | anbi2d 628 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶))) |
16 | | breq2 5074 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝑥𝑅𝑧 ↔ 𝑥𝑅𝐶)) |
17 | 15, 16 | imbi12d 344 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶))) |
18 | | vtoclr.2 |
. . . . . 6
⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
19 | 17, 18 | vtoclg 3495 |
. . . . 5
⊢ (𝐶 ∈ V → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝐶) → 𝑥𝑅𝐶)) |
20 | 8, 13, 19 | vtocl2g 3500 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶 ∈ V → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
21 | 2, 3, 20 | syl2im 40 |
. . 3
⊢ (𝐴𝑅𝐵 → (𝐵𝑅𝐶 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶))) |
22 | 21 | imp 406 |
. 2
⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |
23 | 22 | pm2.43i 52 |
1
⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |