MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclr Structured version   Visualization version   GIF version

Theorem vtoclr 5686
Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
vtoclr.1 Rel 𝑅
vtoclr.2 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
Assertion
Ref Expression
vtoclr ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑥,𝑧)

Proof of Theorem vtoclr
StepHypRef Expression
1 vtoclr.1 . . . . 5 Rel 𝑅
21brrelex12i 5678 . . . 4 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31brrelex2i 5680 . . . 4 (𝐵𝑅𝐶𝐶 ∈ V)
4 breq1 5100 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
54anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝐶) ↔ (𝐴𝑅𝑦𝑦𝑅𝐶)))
6 breq1 5100 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑅𝐶𝐴𝑅𝐶))
75, 6imbi12d 345 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶) ↔ ((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶)))
87imbi2d 341 . . . . 5 (𝑥 = 𝐴 → ((𝐶 ∈ V → ((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶))))
9 breq2 5101 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
10 breq1 5100 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑅𝐶𝐵𝑅𝐶))
119, 10anbi12d 632 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑦𝑅𝐶) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
1211imbi1d 342 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
1312imbi2d 341 . . . . 5 (𝑦 = 𝐵 → ((𝐶 ∈ V → ((𝐴𝑅𝑦𝑦𝑅𝐶) → 𝐴𝑅𝐶)) ↔ (𝐶 ∈ V → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))))
14 breq2 5101 . . . . . . . 8 (𝑧 = 𝐶 → (𝑦𝑅𝑧𝑦𝑅𝐶))
1514anbi2d 630 . . . . . . 7 (𝑧 = 𝐶 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝐶)))
16 breq2 5101 . . . . . . 7 (𝑧 = 𝐶 → (𝑥𝑅𝑧𝑥𝑅𝐶))
1715, 16imbi12d 345 . . . . . 6 (𝑧 = 𝐶 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶)))
18 vtoclr.2 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
1917, 18vtoclg 3518 . . . . 5 (𝐶 ∈ V → ((𝑥𝑅𝑦𝑦𝑅𝐶) → 𝑥𝑅𝐶))
208, 13, 19vtocl2g 3523 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶 ∈ V → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
212, 3, 20syl2im 40 . . 3 (𝐴𝑅𝐵 → (𝐵𝑅𝐶 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2221imp 408 . 2 ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
2322pm2.43i 52 1 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  Vcvv 3442   class class class wbr 5097  Rel wrel 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-br 5098  df-opab 5160  df-xp 5631  df-rel 5632
This theorem is referenced by:  domtr  8873
  Copyright terms: Public domain W3C validator