![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8947 | . 2 ⊢ Rel ≼ | |
2 | vex 3478 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | brdom 8958 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
4 | vex 3478 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brdom 8958 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
6 | exdistrv 1959 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
7 | f1co 6799 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
8 | 7 | ancoms 459 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
9 | vex 3478 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | vex 3478 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
11 | 9, 10 | coex 7923 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
12 | f1eq1 6782 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
13 | 11, 12 | spcev 3596 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
15 | 4 | brdom 8958 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
16 | 14, 15 | sylibr 233 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
17 | 16 | exlimivv 1935 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
18 | 6, 17 | sylbir 234 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
20 | 1, 19 | vtoclr 5739 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 class class class wbr 5148 ∘ ccom 5680 –1-1→wf1 6540 ≼ cdom 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-dom 8943 |
This theorem is referenced by: endomtr 9010 domentr 9011 cnvct 9036 ssctOLD 9054 undomOLD 9062 sdomdomtr 9112 domsdomtr 9114 xpen 9142 unxpdom2 9256 sucxpdom 9257 fidomdm 9331 hartogs 9541 harword 9560 unxpwdom 9586 harcard 9975 infxpenlem 10010 xpct 10013 indcardi 10038 fodomfi2 10057 infpwfien 10059 inffien 10060 djudoml 10181 djuinf 10185 infdju1 10186 djulepw 10189 unctb 10202 infdjuabs 10203 infdju 10205 infdif 10206 infdif2 10207 infxp 10212 infmap2 10215 fictb 10242 cfslb2n 10265 isfin32i 10362 fin1a2lem12 10408 hsmexlem1 10423 dmct 10521 brdom3 10525 brdom5 10526 brdom4 10527 imadomg 10531 fimact 10532 fnct 10534 mptct 10535 iundomg 10538 uniimadom 10541 ondomon 10560 unirnfdomd 10564 alephval2 10569 iunctb 10571 alephexp1 10576 alephreg 10579 cfpwsdom 10581 gchdomtri 10626 canthnum 10646 canthp1lem1 10649 canthp1 10651 pwfseqlem5 10660 pwxpndom2 10662 pwxpndom 10663 pwdjundom 10664 gchdjuidm 10665 gchxpidm 10666 gchpwdom 10667 gchaclem 10675 gchhar 10676 inar1 10772 rankcf 10774 grudomon 10814 grothac 10827 rpnnen 16174 cctop 22729 1stcfb 23169 2ndcredom 23174 2ndc1stc 23175 1stcrestlem 23176 2ndcctbss 23179 2ndcdisj2 23181 2ndcomap 23182 2ndcsep 23183 dis2ndc 23184 hauspwdom 23225 tx1stc 23374 tx2ndc 23375 met2ndci 24251 opnreen 24567 rectbntr0 24568 uniiccdif 25319 dyadmbl 25341 opnmblALT 25344 mbfimaopnlem 25396 abrexdomjm 31999 mptctf 32197 locfinreflem 33106 sigaclci 33416 omsmeas 33608 sibfof 33625 abrexdom 36901 heiborlem3 36984 ttac 42077 idomsubgmo 42242 safesnsupfidom1o 42470 pr2dom 42580 tr3dom 42581 uzct 44052 rn1st 44277 omeiunle 45532 smfaddlem2 45779 smflimlem6 45791 smfmullem4 45809 smfpimbor1lem1 45813 |
Copyright terms: Public domain | W3C validator |