![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8941 | . 2 ⊢ Rel ≼ | |
2 | vex 3478 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | brdom 8952 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
4 | vex 3478 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brdom 8952 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
6 | exdistrv 1959 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
7 | f1co 6796 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
8 | 7 | ancoms 459 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
9 | vex 3478 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | vex 3478 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
11 | 9, 10 | coex 7917 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
12 | f1eq1 6779 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
13 | 11, 12 | spcev 3596 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
15 | 4 | brdom 8952 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
16 | 14, 15 | sylibr 233 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
17 | 16 | exlimivv 1935 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
18 | 6, 17 | sylbir 234 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
20 | 1, 19 | vtoclr 5737 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 class class class wbr 5147 ∘ ccom 5679 –1-1→wf1 6537 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-dom 8937 |
This theorem is referenced by: endomtr 9004 domentr 9005 cnvct 9030 ssctOLD 9048 undomOLD 9056 sdomdomtr 9106 domsdomtr 9108 xpen 9136 unxpdom2 9250 sucxpdom 9251 fidomdm 9325 hartogs 9535 harword 9554 unxpwdom 9580 harcard 9969 infxpenlem 10004 xpct 10007 indcardi 10032 fodomfi2 10051 infpwfien 10053 inffien 10054 djudoml 10175 djuinf 10179 infdju1 10180 djulepw 10183 unctb 10196 infdjuabs 10197 infdju 10199 infdif 10200 infdif2 10201 infxp 10206 infmap2 10209 fictb 10236 cfslb2n 10259 isfin32i 10356 fin1a2lem12 10402 hsmexlem1 10417 dmct 10515 brdom3 10519 brdom5 10520 brdom4 10521 imadomg 10525 fimact 10526 fnct 10528 mptct 10529 iundomg 10532 uniimadom 10535 ondomon 10554 unirnfdomd 10558 alephval2 10563 iunctb 10565 alephexp1 10570 alephreg 10573 cfpwsdom 10575 gchdomtri 10620 canthnum 10640 canthp1lem1 10643 canthp1 10645 pwfseqlem5 10654 pwxpndom2 10656 pwxpndom 10657 pwdjundom 10658 gchdjuidm 10659 gchxpidm 10660 gchpwdom 10661 gchaclem 10669 gchhar 10670 inar1 10766 rankcf 10768 grudomon 10808 grothac 10821 rpnnen 16166 cctop 22500 1stcfb 22940 2ndcredom 22945 2ndc1stc 22946 1stcrestlem 22947 2ndcctbss 22950 2ndcdisj2 22952 2ndcomap 22953 2ndcsep 22954 dis2ndc 22955 hauspwdom 22996 tx1stc 23145 tx2ndc 23146 met2ndci 24022 opnreen 24338 rectbntr0 24339 uniiccdif 25086 dyadmbl 25108 opnmblALT 25111 mbfimaopnlem 25163 abrexdomjm 31731 mptctf 31929 locfinreflem 32808 sigaclci 33118 omsmeas 33310 sibfof 33327 abrexdom 36586 heiborlem3 36669 ttac 41760 idomsubgmo 41925 safesnsupfidom1o 42153 pr2dom 42263 tr3dom 42264 uzct 43735 rn1st 43964 omeiunle 45219 smfaddlem2 45466 smflimlem6 45478 smfmullem4 45496 smfpimbor1lem1 45500 |
Copyright terms: Public domain | W3C validator |