![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8990 | . 2 ⊢ Rel ≼ | |
2 | vex 3482 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | brdom 9000 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
4 | vex 3482 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brdom 9000 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
6 | exdistrv 1953 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
7 | f1co 6816 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
9 | vex 3482 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | vex 3482 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
11 | 9, 10 | coex 7953 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
12 | f1eq1 6800 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
13 | 11, 12 | spcev 3606 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
15 | 4 | brdom 9000 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
17 | 16 | exlimivv 1930 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
20 | 1, 19 | vtoclr 5752 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1776 class class class wbr 5148 ∘ ccom 5693 –1-1→wf1 6560 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-dom 8986 |
This theorem is referenced by: endomtr 9051 domentr 9052 cnvct 9073 ssctOLD 9091 undomOLD 9099 sdomdomtr 9149 domsdomtr 9151 xpen 9179 unxpdom2 9288 sucxpdom 9289 fidomdm 9372 hartogs 9582 harword 9601 unxpwdom 9627 harcard 10016 infxpenlem 10051 xpct 10054 indcardi 10079 fodomfi2 10098 infpwfien 10100 inffien 10101 djudoml 10223 djuinf 10227 infdju1 10228 djulepw 10231 unctb 10242 infdjuabs 10243 infdju 10245 infdif 10246 infdif2 10247 infxp 10252 infmap2 10255 fictb 10282 cfslb2n 10306 isfin32i 10403 fin1a2lem12 10449 hsmexlem1 10464 dmct 10562 brdom3 10566 brdom5 10567 brdom4 10568 imadomg 10572 fimact 10573 fnct 10575 mptct 10576 iundomg 10579 uniimadom 10582 ondomon 10601 unirnfdomd 10605 alephval2 10610 iunctb 10612 alephexp1 10617 alephreg 10620 cfpwsdom 10622 gchdomtri 10667 canthnum 10687 canthp1lem1 10690 canthp1 10692 pwfseqlem5 10701 pwxpndom2 10703 pwxpndom 10704 pwdjundom 10705 gchdjuidm 10706 gchxpidm 10707 gchpwdom 10708 gchaclem 10716 gchhar 10717 inar1 10813 rankcf 10815 grudomon 10855 grothac 10868 rpnnen 16260 cctop 23029 1stcfb 23469 2ndcredom 23474 2ndc1stc 23475 1stcrestlem 23476 2ndcctbss 23479 2ndcdisj2 23481 2ndcomap 23482 2ndcsep 23483 dis2ndc 23484 hauspwdom 23525 tx1stc 23674 tx2ndc 23675 met2ndci 24551 opnreen 24867 rectbntr0 24868 uniiccdif 25627 dyadmbl 25649 opnmblALT 25652 mbfimaopnlem 25704 abrexdomjm 32535 mptctf 32735 locfinreflem 33801 sigaclci 34113 omsmeas 34305 sibfof 34322 abrexdom 37717 heiborlem3 37800 imadomfi 41984 ttac 43025 idomsubgmo 43182 safesnsupfidom1o 43407 pr2dom 43517 tr3dom 43518 uzct 45003 rn1st 45219 omeiunle 46473 smfaddlem2 46720 smflimlem6 46732 smfmullem4 46750 smfpimbor1lem1 46754 |
Copyright terms: Public domain | W3C validator |