Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8697 | . 2 ⊢ Rel ≼ | |
2 | vex 3426 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | brdom 8705 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
4 | vex 3426 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brdom 8705 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
6 | exdistrv 1960 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
7 | f1co 6666 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
9 | vex 3426 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | vex 3426 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
11 | 9, 10 | coex 7751 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
12 | f1eq1 6649 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
13 | 11, 12 | spcev 3535 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
15 | 4 | brdom 8705 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
16 | 14, 15 | sylibr 233 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
17 | 16 | exlimivv 1936 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
18 | 6, 17 | sylbir 234 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
19 | 3, 5, 18 | syl2anb 597 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
20 | 1, 19 | vtoclr 5641 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 class class class wbr 5070 ∘ ccom 5584 –1-1→wf1 6415 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-dom 8693 |
This theorem is referenced by: endomtr 8753 domentr 8754 cnvct 8778 ssct 8793 undom 8800 sdomdomtr 8846 domsdomtr 8848 xpen 8876 unxpdom2 8960 sucxpdom 8961 fidomdm 9026 hartogs 9233 harword 9252 unxpwdom 9278 harcard 9667 infxpenlem 9700 xpct 9703 indcardi 9728 fodomfi2 9747 infpwfien 9749 inffien 9750 djudoml 9871 djuinf 9875 infdju1 9876 djulepw 9879 unctb 9892 infdjuabs 9893 infdju 9895 infdif 9896 infdif2 9897 infxp 9902 infmap2 9905 fictb 9932 cfslb2n 9955 isfin32i 10052 fin1a2lem12 10098 hsmexlem1 10113 dmct 10211 brdom3 10215 brdom5 10216 brdom4 10217 imadomg 10221 fimact 10222 fnct 10224 mptct 10225 iundomg 10228 uniimadom 10231 ondomon 10250 unirnfdomd 10254 alephval2 10259 iunctb 10261 alephexp1 10266 alephreg 10269 cfpwsdom 10271 gchdomtri 10316 canthnum 10336 canthp1lem1 10339 canthp1 10341 pwfseqlem5 10350 pwxpndom2 10352 pwxpndom 10353 pwdjundom 10354 gchdjuidm 10355 gchxpidm 10356 gchpwdom 10357 gchaclem 10365 gchhar 10366 inar1 10462 rankcf 10464 grudomon 10504 grothac 10517 rpnnen 15864 cctop 22064 1stcfb 22504 2ndcredom 22509 2ndc1stc 22510 1stcrestlem 22511 2ndcctbss 22514 2ndcdisj2 22516 2ndcomap 22517 2ndcsep 22518 dis2ndc 22519 hauspwdom 22560 tx1stc 22709 tx2ndc 22710 met2ndci 23584 opnreen 23900 rectbntr0 23901 uniiccdif 24647 dyadmbl 24669 opnmblALT 24672 mbfimaopnlem 24724 abrexdomjm 30753 mptctf 30954 locfinreflem 31692 sigaclci 32000 omsmeas 32190 sibfof 32207 abrexdom 35815 heiborlem3 35898 ttac 40774 idomsubgmo 40939 pr2dom 41032 tr3dom 41033 uzct 42500 omeiunle 43945 smfaddlem2 44186 smflimlem6 44198 smfmullem4 44215 smfpimbor1lem1 44219 |
Copyright terms: Public domain | W3C validator |