| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8970 | . 2 ⊢ Rel ≼ | |
| 2 | vex 3468 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brdom 8980 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
| 4 | vex 3468 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brdom 8980 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
| 6 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
| 7 | f1co 6790 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
| 8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
| 9 | vex 3468 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | vex 3468 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 11 | 9, 10 | coex 7931 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
| 12 | f1eq1 6774 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
| 13 | 11, 12 | spcev 3590 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 15 | 4 | brdom 8980 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 17 | 16 | exlimivv 1932 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
| 20 | 1, 19 | vtoclr 5722 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 class class class wbr 5124 ∘ ccom 5663 –1-1→wf1 6533 ≼ cdom 8962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-dom 8966 |
| This theorem is referenced by: endomtr 9031 domentr 9032 cnvct 9053 ssctOLD 9071 undomOLD 9079 sdomdomtr 9129 domsdomtr 9131 xpen 9159 unxpdom2 9267 sucxpdom 9268 fidomdm 9351 hartogs 9563 harword 9582 unxpwdom 9608 harcard 9997 infxpenlem 10032 xpct 10035 indcardi 10060 fodomfi2 10079 infpwfien 10081 inffien 10082 djudoml 10204 djuinf 10208 infdju1 10209 djulepw 10212 unctb 10223 infdjuabs 10224 infdju 10226 infdif 10227 infdif2 10228 infxp 10233 infmap2 10236 fictb 10263 cfslb2n 10287 isfin32i 10384 fin1a2lem12 10430 hsmexlem1 10445 dmct 10543 brdom3 10547 brdom5 10548 brdom4 10549 imadomg 10553 fimact 10554 fnct 10556 mptct 10557 iundomg 10560 uniimadom 10563 ondomon 10582 unirnfdomd 10586 alephval2 10591 iunctb 10593 alephexp1 10598 alephreg 10601 cfpwsdom 10603 gchdomtri 10648 canthnum 10668 canthp1lem1 10671 canthp1 10673 pwfseqlem5 10682 pwxpndom2 10684 pwxpndom 10685 pwdjundom 10686 gchdjuidm 10687 gchxpidm 10688 gchpwdom 10689 gchaclem 10697 gchhar 10698 inar1 10794 rankcf 10796 grudomon 10836 grothac 10849 rpnnen 16250 cctop 22949 1stcfb 23388 2ndcredom 23393 2ndc1stc 23394 1stcrestlem 23395 2ndcctbss 23398 2ndcdisj2 23400 2ndcomap 23401 2ndcsep 23402 dis2ndc 23403 hauspwdom 23444 tx1stc 23593 tx2ndc 23594 met2ndci 24466 opnreen 24776 rectbntr0 24777 uniiccdif 25536 dyadmbl 25558 opnmblALT 25561 mbfimaopnlem 25613 abrexdomjm 32493 mptctf 32700 locfinreflem 33876 sigaclci 34168 omsmeas 34360 sibfof 34377 abrexdom 37759 heiborlem3 37842 imadomfi 42020 ttac 43035 idomsubgmo 43192 safesnsupfidom1o 43416 pr2dom 43526 tr3dom 43527 uzct 45067 rn1st 45277 omeiunle 46526 smfaddlem2 46773 smflimlem6 46785 smfmullem4 46803 smfpimbor1lem1 46807 |
| Copyright terms: Public domain | W3C validator |