![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 9009 | . 2 ⊢ Rel ≼ | |
2 | vex 3492 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | brdom 9020 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
4 | vex 3492 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brdom 9020 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
6 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
7 | f1co 6828 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
9 | vex 3492 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | vex 3492 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
11 | 9, 10 | coex 7970 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
12 | f1eq1 6812 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
13 | 11, 12 | spcev 3619 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
15 | 4 | brdom 9020 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
17 | 16 | exlimivv 1931 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
19 | 3, 5, 18 | syl2anb 597 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
20 | 1, 19 | vtoclr 5763 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 class class class wbr 5166 ∘ ccom 5704 –1-1→wf1 6570 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-dom 9005 |
This theorem is referenced by: endomtr 9072 domentr 9073 cnvct 9099 ssctOLD 9118 undomOLD 9126 sdomdomtr 9176 domsdomtr 9178 xpen 9206 unxpdom2 9317 sucxpdom 9318 fidomdm 9402 hartogs 9613 harword 9632 unxpwdom 9658 harcard 10047 infxpenlem 10082 xpct 10085 indcardi 10110 fodomfi2 10129 infpwfien 10131 inffien 10132 djudoml 10254 djuinf 10258 infdju1 10259 djulepw 10262 unctb 10273 infdjuabs 10274 infdju 10276 infdif 10277 infdif2 10278 infxp 10283 infmap2 10286 fictb 10313 cfslb2n 10337 isfin32i 10434 fin1a2lem12 10480 hsmexlem1 10495 dmct 10593 brdom3 10597 brdom5 10598 brdom4 10599 imadomg 10603 fimact 10604 fnct 10606 mptct 10607 iundomg 10610 uniimadom 10613 ondomon 10632 unirnfdomd 10636 alephval2 10641 iunctb 10643 alephexp1 10648 alephreg 10651 cfpwsdom 10653 gchdomtri 10698 canthnum 10718 canthp1lem1 10721 canthp1 10723 pwfseqlem5 10732 pwxpndom2 10734 pwxpndom 10735 pwdjundom 10736 gchdjuidm 10737 gchxpidm 10738 gchpwdom 10739 gchaclem 10747 gchhar 10748 inar1 10844 rankcf 10846 grudomon 10886 grothac 10899 rpnnen 16275 cctop 23034 1stcfb 23474 2ndcredom 23479 2ndc1stc 23480 1stcrestlem 23481 2ndcctbss 23484 2ndcdisj2 23486 2ndcomap 23487 2ndcsep 23488 dis2ndc 23489 hauspwdom 23530 tx1stc 23679 tx2ndc 23680 met2ndci 24556 opnreen 24872 rectbntr0 24873 uniiccdif 25632 dyadmbl 25654 opnmblALT 25657 mbfimaopnlem 25709 abrexdomjm 32535 mptctf 32731 locfinreflem 33786 sigaclci 34096 omsmeas 34288 sibfof 34305 abrexdom 37690 heiborlem3 37773 imadomfi 41959 ttac 42993 idomsubgmo 43154 safesnsupfidom1o 43379 pr2dom 43489 tr3dom 43490 uzct 44965 rn1st 45183 omeiunle 46438 smfaddlem2 46685 smflimlem6 46697 smfmullem4 46715 smfpimbor1lem1 46719 |
Copyright terms: Public domain | W3C validator |