| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8973 | . 2 ⊢ Rel ≼ | |
| 2 | vex 3467 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brdom 8983 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
| 4 | vex 3467 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brdom 8983 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
| 6 | exdistrv 1954 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
| 7 | f1co 6795 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
| 8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
| 9 | vex 3467 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | vex 3467 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 11 | 9, 10 | coex 7934 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
| 12 | f1eq1 6779 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
| 13 | 11, 12 | spcev 3589 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 15 | 4 | brdom 8983 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 17 | 16 | exlimivv 1931 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
| 20 | 1, 19 | vtoclr 5728 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 class class class wbr 5123 ∘ ccom 5669 –1-1→wf1 6538 ≼ cdom 8965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-dom 8969 |
| This theorem is referenced by: endomtr 9034 domentr 9035 cnvct 9056 ssctOLD 9074 undomOLD 9082 sdomdomtr 9132 domsdomtr 9134 xpen 9162 unxpdom2 9272 sucxpdom 9273 fidomdm 9356 hartogs 9566 harword 9585 unxpwdom 9611 harcard 10000 infxpenlem 10035 xpct 10038 indcardi 10063 fodomfi2 10082 infpwfien 10084 inffien 10085 djudoml 10207 djuinf 10211 infdju1 10212 djulepw 10215 unctb 10226 infdjuabs 10227 infdju 10229 infdif 10230 infdif2 10231 infxp 10236 infmap2 10239 fictb 10266 cfslb2n 10290 isfin32i 10387 fin1a2lem12 10433 hsmexlem1 10448 dmct 10546 brdom3 10550 brdom5 10551 brdom4 10552 imadomg 10556 fimact 10557 fnct 10559 mptct 10560 iundomg 10563 uniimadom 10566 ondomon 10585 unirnfdomd 10589 alephval2 10594 iunctb 10596 alephexp1 10601 alephreg 10604 cfpwsdom 10606 gchdomtri 10651 canthnum 10671 canthp1lem1 10674 canthp1 10676 pwfseqlem5 10685 pwxpndom2 10687 pwxpndom 10688 pwdjundom 10689 gchdjuidm 10690 gchxpidm 10691 gchpwdom 10692 gchaclem 10700 gchhar 10701 inar1 10797 rankcf 10799 grudomon 10839 grothac 10852 rpnnen 16245 cctop 22960 1stcfb 23399 2ndcredom 23404 2ndc1stc 23405 1stcrestlem 23406 2ndcctbss 23409 2ndcdisj2 23411 2ndcomap 23412 2ndcsep 23413 dis2ndc 23414 hauspwdom 23455 tx1stc 23604 tx2ndc 23605 met2ndci 24479 opnreen 24789 rectbntr0 24790 uniiccdif 25549 dyadmbl 25571 opnmblALT 25574 mbfimaopnlem 25626 abrexdomjm 32454 mptctf 32664 locfinreflem 33798 sigaclci 34092 omsmeas 34284 sibfof 34301 abrexdom 37696 heiborlem3 37779 imadomfi 41962 ttac 43011 idomsubgmo 43168 safesnsupfidom1o 43392 pr2dom 43502 tr3dom 43503 uzct 45025 rn1st 45237 omeiunle 46489 smfaddlem2 46736 smflimlem6 46748 smfmullem4 46766 smfpimbor1lem1 46770 |
| Copyright terms: Public domain | W3C validator |