| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8878 | . 2 ⊢ Rel ≼ | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brdom 8886 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
| 4 | vex 3440 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brdom 8886 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
| 6 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
| 7 | f1co 6731 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
| 8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
| 9 | vex 3440 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | vex 3440 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 11 | 9, 10 | coex 7863 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
| 12 | f1eq1 6715 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
| 13 | 11, 12 | spcev 3561 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 15 | 4 | brdom 8886 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 17 | 16 | exlimivv 1932 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
| 20 | 1, 19 | vtoclr 5682 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 class class class wbr 5092 ∘ ccom 5623 –1-1→wf1 6479 ≼ cdom 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-dom 8874 |
| This theorem is referenced by: endomtr 8937 domentr 8938 cnvct 8959 sdomdomtr 9027 domsdomtr 9029 xpen 9057 unxpdom2 9149 sucxpdom 9150 fidomdm 9224 hartogs 9436 harword 9455 unxpwdom 9481 harcard 9874 infxpenlem 9907 xpct 9910 indcardi 9935 fodomfi2 9954 infpwfien 9956 inffien 9957 djudoml 10079 djuinf 10083 infdju1 10084 djulepw 10087 unctb 10098 infdjuabs 10099 infdju 10101 infdif 10102 infdif2 10103 infxp 10108 infmap2 10111 fictb 10138 cfslb2n 10162 isfin32i 10259 fin1a2lem12 10305 hsmexlem1 10320 dmct 10418 brdom3 10422 brdom5 10423 brdom4 10424 imadomg 10428 fimact 10429 fnct 10431 mptct 10432 iundomg 10435 uniimadom 10438 ondomon 10457 unirnfdomd 10461 alephval2 10466 iunctb 10468 alephexp1 10473 alephreg 10476 cfpwsdom 10478 gchdomtri 10523 canthnum 10543 canthp1lem1 10546 canthp1 10548 pwfseqlem5 10557 pwxpndom2 10559 pwxpndom 10560 pwdjundom 10561 gchdjuidm 10562 gchxpidm 10563 gchpwdom 10564 gchaclem 10572 gchhar 10573 inar1 10669 rankcf 10671 grudomon 10711 grothac 10724 rpnnen 16136 cctop 22891 1stcfb 23330 2ndcredom 23335 2ndc1stc 23336 1stcrestlem 23337 2ndcctbss 23340 2ndcdisj2 23342 2ndcomap 23343 2ndcsep 23344 dis2ndc 23345 hauspwdom 23386 tx1stc 23535 tx2ndc 23536 met2ndci 24408 opnreen 24718 rectbntr0 24719 uniiccdif 25477 dyadmbl 25499 opnmblALT 25502 mbfimaopnlem 25554 abrexdomjm 32456 mptctf 32668 locfinreflem 33823 sigaclci 34115 omsmeas 34307 sibfof 34324 abrexdom 37730 heiborlem3 37813 imadomfi 41995 ttac 43029 idomsubgmo 43186 safesnsupfidom1o 43410 pr2dom 43520 tr3dom 43521 uzct 45061 rn1st 45271 omeiunle 46518 smfaddlem2 46765 smflimlem6 46777 smfmullem4 46795 smfpimbor1lem1 46799 |
| Copyright terms: Public domain | W3C validator |