| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8924 | . 2 ⊢ Rel ≼ | |
| 2 | vex 3451 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brdom 8932 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
| 4 | vex 3451 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brdom 8932 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
| 6 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
| 7 | f1co 6767 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
| 8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
| 9 | vex 3451 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | vex 3451 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 11 | 9, 10 | coex 7906 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
| 12 | f1eq1 6751 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
| 13 | 11, 12 | spcev 3572 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 15 | 4 | brdom 8932 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 17 | 16 | exlimivv 1932 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
| 20 | 1, 19 | vtoclr 5701 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 class class class wbr 5107 ∘ ccom 5642 –1-1→wf1 6508 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-dom 8920 |
| This theorem is referenced by: endomtr 8983 domentr 8984 cnvct 9005 sdomdomtr 9074 domsdomtr 9076 xpen 9104 unxpdom2 9201 sucxpdom 9202 fidomdm 9285 hartogs 9497 harword 9516 unxpwdom 9542 harcard 9931 infxpenlem 9966 xpct 9969 indcardi 9994 fodomfi2 10013 infpwfien 10015 inffien 10016 djudoml 10138 djuinf 10142 infdju1 10143 djulepw 10146 unctb 10157 infdjuabs 10158 infdju 10160 infdif 10161 infdif2 10162 infxp 10167 infmap2 10170 fictb 10197 cfslb2n 10221 isfin32i 10318 fin1a2lem12 10364 hsmexlem1 10379 dmct 10477 brdom3 10481 brdom5 10482 brdom4 10483 imadomg 10487 fimact 10488 fnct 10490 mptct 10491 iundomg 10494 uniimadom 10497 ondomon 10516 unirnfdomd 10520 alephval2 10525 iunctb 10527 alephexp1 10532 alephreg 10535 cfpwsdom 10537 gchdomtri 10582 canthnum 10602 canthp1lem1 10605 canthp1 10607 pwfseqlem5 10616 pwxpndom2 10618 pwxpndom 10619 pwdjundom 10620 gchdjuidm 10621 gchxpidm 10622 gchpwdom 10623 gchaclem 10631 gchhar 10632 inar1 10728 rankcf 10730 grudomon 10770 grothac 10783 rpnnen 16195 cctop 22893 1stcfb 23332 2ndcredom 23337 2ndc1stc 23338 1stcrestlem 23339 2ndcctbss 23342 2ndcdisj2 23344 2ndcomap 23345 2ndcsep 23346 dis2ndc 23347 hauspwdom 23388 tx1stc 23537 tx2ndc 23538 met2ndci 24410 opnreen 24720 rectbntr0 24721 uniiccdif 25479 dyadmbl 25501 opnmblALT 25504 mbfimaopnlem 25556 abrexdomjm 32436 mptctf 32641 locfinreflem 33830 sigaclci 34122 omsmeas 34314 sibfof 34331 abrexdom 37724 heiborlem3 37807 imadomfi 41990 ttac 43025 idomsubgmo 43182 safesnsupfidom1o 43406 pr2dom 43516 tr3dom 43517 uzct 45057 rn1st 45267 omeiunle 46515 smfaddlem2 46762 smflimlem6 46774 smfmullem4 46792 smfpimbor1lem1 46796 |
| Copyright terms: Public domain | W3C validator |