| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8901 | . 2 ⊢ Rel ≼ | |
| 2 | vex 3448 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brdom 8909 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
| 4 | vex 3448 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brdom 8909 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
| 6 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
| 7 | f1co 6749 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
| 8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
| 9 | vex 3448 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | vex 3448 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 11 | 9, 10 | coex 7886 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
| 12 | f1eq1 6733 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
| 13 | 11, 12 | spcev 3569 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 15 | 4 | brdom 8909 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 17 | 16 | exlimivv 1932 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
| 20 | 1, 19 | vtoclr 5694 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 class class class wbr 5102 ∘ ccom 5635 –1-1→wf1 6496 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-dom 8897 |
| This theorem is referenced by: endomtr 8960 domentr 8961 cnvct 8982 sdomdomtr 9051 domsdomtr 9053 xpen 9081 unxpdom2 9177 sucxpdom 9178 fidomdm 9261 hartogs 9473 harword 9492 unxpwdom 9518 harcard 9907 infxpenlem 9942 xpct 9945 indcardi 9970 fodomfi2 9989 infpwfien 9991 inffien 9992 djudoml 10114 djuinf 10118 infdju1 10119 djulepw 10122 unctb 10133 infdjuabs 10134 infdju 10136 infdif 10137 infdif2 10138 infxp 10143 infmap2 10146 fictb 10173 cfslb2n 10197 isfin32i 10294 fin1a2lem12 10340 hsmexlem1 10355 dmct 10453 brdom3 10457 brdom5 10458 brdom4 10459 imadomg 10463 fimact 10464 fnct 10466 mptct 10467 iundomg 10470 uniimadom 10473 ondomon 10492 unirnfdomd 10496 alephval2 10501 iunctb 10503 alephexp1 10508 alephreg 10511 cfpwsdom 10513 gchdomtri 10558 canthnum 10578 canthp1lem1 10581 canthp1 10583 pwfseqlem5 10592 pwxpndom2 10594 pwxpndom 10595 pwdjundom 10596 gchdjuidm 10597 gchxpidm 10598 gchpwdom 10599 gchaclem 10607 gchhar 10608 inar1 10704 rankcf 10706 grudomon 10746 grothac 10759 rpnnen 16171 cctop 22926 1stcfb 23365 2ndcredom 23370 2ndc1stc 23371 1stcrestlem 23372 2ndcctbss 23375 2ndcdisj2 23377 2ndcomap 23378 2ndcsep 23379 dis2ndc 23380 hauspwdom 23421 tx1stc 23570 tx2ndc 23571 met2ndci 24443 opnreen 24753 rectbntr0 24754 uniiccdif 25512 dyadmbl 25534 opnmblALT 25537 mbfimaopnlem 25589 abrexdomjm 32486 mptctf 32691 locfinreflem 33823 sigaclci 34115 omsmeas 34307 sibfof 34324 abrexdom 37717 heiborlem3 37800 imadomfi 41983 ttac 43018 idomsubgmo 43175 safesnsupfidom1o 43399 pr2dom 43509 tr3dom 43510 uzct 45050 rn1st 45260 omeiunle 46508 smfaddlem2 46755 smflimlem6 46767 smfmullem4 46785 smfpimbor1lem1 46789 |
| Copyright terms: Public domain | W3C validator |