![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8970 | . 2 ⊢ Rel ≼ | |
2 | vex 3475 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | brdom 8981 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
4 | vex 3475 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 4 | brdom 8981 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
6 | exdistrv 1952 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
7 | f1co 6805 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
9 | vex 3475 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | vex 3475 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
11 | 9, 10 | coex 7938 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
12 | f1eq1 6788 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
13 | 11, 12 | spcev 3593 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
15 | 4 | brdom 8981 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
16 | 14, 15 | sylibr 233 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
17 | 16 | exlimivv 1928 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
18 | 6, 17 | sylbir 234 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
19 | 3, 5, 18 | syl2anb 597 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
20 | 1, 19 | vtoclr 5741 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1774 class class class wbr 5148 ∘ ccom 5682 –1-1→wf1 6545 ≼ cdom 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-dom 8966 |
This theorem is referenced by: endomtr 9033 domentr 9034 cnvct 9059 ssctOLD 9077 undomOLD 9085 sdomdomtr 9135 domsdomtr 9137 xpen 9165 unxpdom2 9279 sucxpdom 9280 fidomdm 9354 hartogs 9568 harword 9587 unxpwdom 9613 harcard 10002 infxpenlem 10037 xpct 10040 indcardi 10065 fodomfi2 10084 infpwfien 10086 inffien 10087 djudoml 10208 djuinf 10212 infdju1 10213 djulepw 10216 unctb 10229 infdjuabs 10230 infdju 10232 infdif 10233 infdif2 10234 infxp 10239 infmap2 10242 fictb 10269 cfslb2n 10292 isfin32i 10389 fin1a2lem12 10435 hsmexlem1 10450 dmct 10548 brdom3 10552 brdom5 10553 brdom4 10554 imadomg 10558 fimact 10559 fnct 10561 mptct 10562 iundomg 10565 uniimadom 10568 ondomon 10587 unirnfdomd 10591 alephval2 10596 iunctb 10598 alephexp1 10603 alephreg 10606 cfpwsdom 10608 gchdomtri 10653 canthnum 10673 canthp1lem1 10676 canthp1 10678 pwfseqlem5 10687 pwxpndom2 10689 pwxpndom 10690 pwdjundom 10691 gchdjuidm 10692 gchxpidm 10693 gchpwdom 10694 gchaclem 10702 gchhar 10703 inar1 10799 rankcf 10801 grudomon 10841 grothac 10854 rpnnen 16204 cctop 22922 1stcfb 23362 2ndcredom 23367 2ndc1stc 23368 1stcrestlem 23369 2ndcctbss 23372 2ndcdisj2 23374 2ndcomap 23375 2ndcsep 23376 dis2ndc 23377 hauspwdom 23418 tx1stc 23567 tx2ndc 23568 met2ndci 24444 opnreen 24760 rectbntr0 24761 uniiccdif 25520 dyadmbl 25542 opnmblALT 25545 mbfimaopnlem 25597 abrexdomjm 32315 mptctf 32512 locfinreflem 33441 sigaclci 33751 omsmeas 33943 sibfof 33960 abrexdom 37203 heiborlem3 37286 imadomfi 41473 ttac 42457 idomsubgmo 42621 safesnsupfidom1o 42847 pr2dom 42957 tr3dom 42958 uzct 44427 rn1st 44650 omeiunle 45905 smfaddlem2 46152 smflimlem6 46164 smfmullem4 46182 smfpimbor1lem1 46186 |
Copyright terms: Public domain | W3C validator |