| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8875 | . 2 ⊢ Rel ≼ | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brdom 8883 | . . 3 ⊢ (𝑥 ≼ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1→𝑦) |
| 4 | vex 3440 | . . . 4 ⊢ 𝑧 ∈ V | |
| 5 | 4 | brdom 8883 | . . 3 ⊢ (𝑦 ≼ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1→𝑧) |
| 6 | exdistrv 1956 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧)) | |
| 7 | f1co 6730 | . . . . . . . 8 ⊢ ((𝑓:𝑦–1-1→𝑧 ∧ 𝑔:𝑥–1-1→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) | |
| 8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1→𝑧) |
| 9 | vex 3440 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | vex 3440 | . . . . . . . . 9 ⊢ 𝑔 ∈ V | |
| 11 | 9, 10 | coex 7860 | . . . . . . . 8 ⊢ (𝑓 ∘ 𝑔) ∈ V |
| 12 | f1eq1 6714 | . . . . . . . 8 ⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ:𝑥–1-1→𝑧 ↔ (𝑓 ∘ 𝑔):𝑥–1-1→𝑧)) | |
| 13 | 11, 12 | spcev 3556 | . . . . . . 7 ⊢ ((𝑓 ∘ 𝑔):𝑥–1-1→𝑧 → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 14 | 8, 13 | syl 17 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 15 | 4 | brdom 8883 | . . . . . 6 ⊢ (𝑥 ≼ 𝑧 ↔ ∃ℎ ℎ:𝑥–1-1→𝑧) |
| 16 | 14, 15 | sylibr 234 | . . . . 5 ⊢ ((𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 17 | 16 | exlimivv 1933 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1→𝑦 ∧ 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 18 | 6, 17 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1→𝑧) → 𝑥 ≼ 𝑧) |
| 19 | 3, 5, 18 | syl2anb 598 | . 2 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) → 𝑥 ≼ 𝑧) |
| 20 | 1, 19 | vtoclr 5677 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 class class class wbr 5089 ∘ ccom 5618 –1-1→wf1 6478 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-dom 8871 |
| This theorem is referenced by: endomtr 8934 domentr 8935 cnvct 8956 sdomdomtr 9023 domsdomtr 9025 xpen 9053 unxpdom2 9144 sucxpdom 9145 fidomdm 9218 hartogs 9430 harword 9449 unxpwdom 9475 harcard 9871 infxpenlem 9904 xpct 9907 indcardi 9932 fodomfi2 9951 infpwfien 9953 inffien 9954 djudoml 10076 djuinf 10080 infdju1 10081 djulepw 10084 unctb 10095 infdjuabs 10096 infdju 10098 infdif 10099 infdif2 10100 infxp 10105 infmap2 10108 fictb 10135 cfslb2n 10159 isfin32i 10256 fin1a2lem12 10302 hsmexlem1 10317 dmct 10415 brdom3 10419 brdom5 10420 brdom4 10421 imadomg 10425 fimact 10426 fnct 10428 mptct 10429 iundomg 10432 uniimadom 10435 ondomon 10454 unirnfdomd 10458 alephval2 10463 iunctb 10465 alephexp1 10470 alephreg 10473 cfpwsdom 10475 gchdomtri 10520 canthnum 10540 canthp1lem1 10543 canthp1 10545 pwfseqlem5 10554 pwxpndom2 10556 pwxpndom 10557 pwdjundom 10558 gchdjuidm 10559 gchxpidm 10560 gchpwdom 10561 gchaclem 10569 gchhar 10570 inar1 10666 rankcf 10668 grudomon 10708 grothac 10721 rpnnen 16136 cctop 22921 1stcfb 23360 2ndcredom 23365 2ndc1stc 23366 1stcrestlem 23367 2ndcctbss 23370 2ndcdisj2 23372 2ndcomap 23373 2ndcsep 23374 dis2ndc 23375 hauspwdom 23416 tx1stc 23565 tx2ndc 23566 met2ndci 24437 opnreen 24747 rectbntr0 24748 uniiccdif 25506 dyadmbl 25528 opnmblALT 25531 mbfimaopnlem 25583 abrexdomjm 32487 mptctf 32699 locfinreflem 33853 sigaclci 34145 omsmeas 34336 sibfof 34353 abrexdom 37769 heiborlem3 37852 imadomfi 42094 ttac 43128 idomsubgmo 43285 safesnsupfidom1o 43509 pr2dom 43619 tr3dom 43620 uzct 45159 rn1st 45369 omeiunle 46614 smfaddlem2 46861 smflimlem6 46873 smfmullem4 46891 smfpimbor1lem1 46895 |
| Copyright terms: Public domain | W3C validator |