MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq3 Structured version   Visualization version   GIF version

Theorem wrecseq3 8344
Description: Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq3 (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺))

Proof of Theorem wrecseq3
StepHypRef Expression
1 eqid 2735 . 2 𝑅 = 𝑅
2 eqid 2735 . 2 𝐴 = 𝐴
3 wrecseq123 8338 . 2 ((𝑅 = 𝑅𝐴 = 𝐴𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺))
41, 2, 3mp3an12 1450 1 (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wrecscwrecs 8335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fv 6571  df-ov 7434  df-frecs 8305  df-wrecs 8336
This theorem is referenced by:  recseq  8413  bpolylem  16081
  Copyright terms: Public domain W3C validator