MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq3 Structured version   Visualization version   GIF version

Theorem wrecseq3 8361
Description: Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq3 (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺))

Proof of Theorem wrecseq3
StepHypRef Expression
1 eqid 2740 . 2 𝑅 = 𝑅
2 eqid 2740 . 2 𝐴 = 𝐴
3 wrecseq123 8355 . 2 ((𝑅 = 𝑅𝐴 = 𝐴𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺))
41, 2, 3mp3an12 1451 1 (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wrecscwrecs 8352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fv 6581  df-ov 7451  df-frecs 8322  df-wrecs 8353
This theorem is referenced by:  recseq  8430  bpolylem  16096
  Copyright terms: Public domain W3C validator