| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recseq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrecseq3 8296 | . 2 ⊢ (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺)) | |
| 2 | df-recs 8340 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 3 | df-recs 8340 | . 2 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 E cep 5537 Oncon0 6332 wrecscwrecs 8290 recscrecs 8339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fv 6519 df-ov 7390 df-frecs 8260 df-wrecs 8291 df-recs 8340 |
| This theorem is referenced by: rdgeq1 8379 rdgeq2 8380 dfoi 9464 oieq1 9465 oieq2 9466 ordtypecbv 9470 dfac12r 10100 zorn2g 10456 ttukey2g 10469 csbrdgg 37317 aomclem3 43045 aomclem8 43050 |
| Copyright terms: Public domain | W3C validator |