| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recseq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrecseq3 8257 | . 2 ⊢ (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺)) | |
| 2 | df-recs 8301 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 3 | df-recs 8301 | . 2 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 E cep 5522 Oncon0 6311 wrecscwrecs 8251 recscrecs 8300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7356 df-frecs 8221 df-wrecs 8252 df-recs 8301 |
| This theorem is referenced by: rdgeq1 8340 rdgeq2 8341 dfoi 9422 oieq1 9423 oieq2 9424 ordtypecbv 9428 dfac12r 10060 zorn2g 10416 ttukey2g 10429 csbrdgg 37302 aomclem3 43029 aomclem8 43034 |
| Copyright terms: Public domain | W3C validator |