| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recseq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrecseq3 8298 | . 2 ⊢ (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺)) | |
| 2 | df-recs 8342 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 3 | df-recs 8342 | . 2 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 E cep 5539 Oncon0 6334 wrecscwrecs 8292 recscrecs 8341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fv 6521 df-ov 7392 df-frecs 8262 df-wrecs 8293 df-recs 8342 |
| This theorem is referenced by: rdgeq1 8381 rdgeq2 8382 dfoi 9470 oieq1 9471 oieq2 9472 ordtypecbv 9476 dfac12r 10106 zorn2g 10462 ttukey2g 10475 csbrdgg 37312 aomclem3 43038 aomclem8 43043 |
| Copyright terms: Public domain | W3C validator |