| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recseq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrecseq3 8253 | . 2 ⊢ (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺)) | |
| 2 | df-recs 8297 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 3 | df-recs 8297 | . 2 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
| 4 | 1, 2, 3 | 3eqtr4g 2793 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 E cep 5518 Oncon0 6311 wrecscwrecs 8247 recscrecs 8296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7355 df-frecs 8217 df-wrecs 8248 df-recs 8297 |
| This theorem is referenced by: rdgeq1 8336 rdgeq2 8337 dfoi 9404 oieq1 9405 oieq2 9406 ordtypecbv 9410 dfac12r 10045 zorn2g 10401 ttukey2g 10414 csbrdgg 37394 aomclem3 43173 aomclem8 43178 |
| Copyright terms: Public domain | W3C validator |