MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recseq Structured version   Visualization version   GIF version

Theorem recseq 8342
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))

Proof of Theorem recseq
StepHypRef Expression
1 wrecseq3 8296 . 2 (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺))
2 df-recs 8340 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
3 df-recs 8340 . 2 recs(𝐺) = wrecs( E , On, 𝐺)
41, 2, 33eqtr4g 2789 1 (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   E cep 5537  Oncon0 6332  wrecscwrecs 8290  recscrecs 8339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  rdgeq1  8379  rdgeq2  8380  dfoi  9464  oieq1  9465  oieq2  9466  ordtypecbv  9470  dfac12r  10100  zorn2g  10456  ttukey2g  10469  csbrdgg  37317  aomclem3  43045  aomclem8  43050
  Copyright terms: Public domain W3C validator