![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recseq | Structured version Visualization version GIF version |
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrecseq3 7748 | . 2 ⊢ (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺)) | |
2 | df-recs 7805 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
3 | df-recs 7805 | . 2 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
4 | 1, 2, 3 | 3eqtr4g 2833 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 E cep 5309 Oncon0 6023 wrecscwrecs 7742 recscrecs 7804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-xp 5406 df-cnv 5408 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-iota 6146 df-fv 6190 df-wrecs 7743 df-recs 7805 |
This theorem is referenced by: rdgeq1 7844 rdgeq2 7845 dfoi 8762 oieq1 8763 oieq2 8764 ordtypecbv 8768 dfac12r 9358 zorn2g 9715 ttukey2g 9728 csbrdgg 33987 aomclem3 38997 aomclem8 39002 |
Copyright terms: Public domain | W3C validator |