MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi2 Structured version   Visualization version   GIF version

Theorem xadddi2 13193
Description: The assumption that the multiplier be real in xadddi 13191 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi2
StepHypRef Expression
1 simpr 484 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simp2l 1200 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
32ad2antrr 726 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
4 simp3l 1202 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
54ad2antrr 726 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐶 ∈ ℝ*)
6 xadddi 13191 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
71, 3, 5, 6syl3anc 1373 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
8 pnfxr 11163 . . . . . 6 +∞ ∈ ℝ*
94adantr 480 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ*)
10 xmulcl 13169 . . . . . 6 ((+∞ ∈ ℝ*𝐶 ∈ ℝ*) → (+∞ ·e 𝐶) ∈ ℝ*)
118, 9, 10sylancr 587 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ∈ ℝ*)
12 simpl3r 1230 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ 𝐶)
13 0lepnf 13029 . . . . . . . . 9 0 ≤ +∞
14 xmulge0 13180 . . . . . . . . 9 (((+∞ ∈ ℝ* ∧ 0 ≤ +∞) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ (+∞ ·e 𝐶))
158, 13, 14mpanl12 702 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 0 ≤ (+∞ ·e 𝐶))
164, 12, 15syl2an2r 685 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ (+∞ ·e 𝐶))
17 ge0nemnf 13069 . . . . . . 7 (((+∞ ·e 𝐶) ∈ ℝ* ∧ 0 ≤ (+∞ ·e 𝐶)) → (+∞ ·e 𝐶) ≠ -∞)
1811, 16, 17syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ≠ -∞)
1918adantr 480 . . . . 5 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) ≠ -∞)
20 xaddpnf2 13123 . . . . 5 (((+∞ ·e 𝐶) ∈ ℝ* ∧ (+∞ ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
2111, 19, 20syl2an2r 685 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
22 oveq1 7353 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
23 oveq1 7353 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐶) = (+∞ ·e 𝐶))
2422, 23oveq12d 7364 . . . . 5 (𝐴 = +∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)))
25 xmulpnf2 13171 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
262, 25sylan 580 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2726oveq1d 7361 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
2824, 27sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
29 oveq1 7353 . . . . 5 (𝐴 = +∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (+∞ ·e (𝐵 +𝑒 𝐶)))
30 xaddcl 13135 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
312, 4, 30syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
32 0xr 11156 . . . . . . . 8 0 ∈ ℝ*
3332a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
342adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
3531adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
36 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < 𝐵)
3734xaddridd 13139 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) = 𝐵)
38 xleadd2a 13150 . . . . . . . . 9 (((0 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐶) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
3933, 9, 34, 12, 38syl31anc 1375 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
4037, 39eqbrtrrd 5115 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
4133, 34, 35, 36, 40xrltletrd 13057 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < (𝐵 +𝑒 𝐶))
42 xmulpnf2 13171 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4331, 41, 42syl2an2r 685 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4429, 43sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = +∞)
4521, 28, 443eqtr4rd 2777 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
46 mnfxr 11166 . . . . . . 7 -∞ ∈ ℝ*
47 xmulcl 13169 . . . . . . 7 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-∞ ·e 𝐶) ∈ ℝ*)
4846, 9, 47sylancr 587 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ∈ ℝ*)
49 xmulneg1 13165 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
5046, 9, 49sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
51 xnegmnf 13106 . . . . . . . . . . . 12 -𝑒-∞ = +∞
5251oveq1i 7356 . . . . . . . . . . 11 (-𝑒-∞ ·e 𝐶) = (+∞ ·e 𝐶)
5350, 52eqtr3di 2781 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒(-∞ ·e 𝐶) = (+∞ ·e 𝐶))
54 xnegpnf 13105 . . . . . . . . . . 11 -𝑒+∞ = -∞
5554a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒+∞ = -∞)
5653, 55eqeq12d 2747 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (+∞ ·e 𝐶) = -∞))
57 xneg11 13111 . . . . . . . . . 10 (((-∞ ·e 𝐶) ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
5848, 8, 57sylancl 586 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
5956, 58bitr3d 281 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) = -∞ ↔ (-∞ ·e 𝐶) = +∞))
6059necon3bid 2972 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) ≠ -∞ ↔ (-∞ ·e 𝐶) ≠ +∞))
6118, 60mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ≠ +∞)
62 xaddmnf2 13125 . . . . . 6 (((-∞ ·e 𝐶) ∈ ℝ* ∧ (-∞ ·e 𝐶) ≠ +∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6348, 61, 62syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6463adantr 480 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
65 oveq1 7353 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐵) = (-∞ ·e 𝐵))
66 oveq1 7353 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐶) = (-∞ ·e 𝐶))
6765, 66oveq12d 7364 . . . . 5 (𝐴 = -∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)))
68 xmulmnf2 13173 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
692, 68sylan 580 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
7069oveq1d 7361 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
7167, 70sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
72 oveq1 7353 . . . . 5 (𝐴 = -∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (-∞ ·e (𝐵 +𝑒 𝐶)))
73 xmulmnf2 13173 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7431, 41, 73syl2an2r 685 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7572, 74sylan9eqr 2788 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = -∞)
7664, 71, 753eqtr4rd 2777 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
77 simpl1 1192 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
78 elxr 13012 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7977, 78sylib 218 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
807, 45, 76, 79mpjao3dan 1434 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
81 simp1 1136 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
82 xmulcl 13169 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
8381, 4, 82syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 𝐶) ∈ ℝ*)
8483adantr 480 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐶) ∈ ℝ*)
85 xaddlid 13138 . . . 4 ((𝐴 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
8684, 85syl 17 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
87 oveq2 7354 . . . . . 6 (0 = 𝐵 → (𝐴 ·e 0) = (𝐴 ·e 𝐵))
8887eqcomd 2737 . . . . 5 (0 = 𝐵 → (𝐴 ·e 𝐵) = (𝐴 ·e 0))
89 xmul01 13163 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
90893ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 0) = 0)
9188, 90sylan9eqr 2788 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐵) = 0)
9291oveq1d 7361 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (0 +𝑒 (𝐴 ·e 𝐶)))
93 oveq1 7353 . . . . . 6 (0 = 𝐵 → (0 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
9493eqcomd 2737 . . . . 5 (0 = 𝐵 → (𝐵 +𝑒 𝐶) = (0 +𝑒 𝐶))
95 xaddlid 13138 . . . . . 6 (𝐶 ∈ ℝ* → (0 +𝑒 𝐶) = 𝐶)
964, 95syl 17 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 +𝑒 𝐶) = 𝐶)
9794, 96sylan9eqr 2788 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐵 +𝑒 𝐶) = 𝐶)
9897oveq2d 7362 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 𝐶))
9986, 92, 983eqtr4rd 2777 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
100 simp2r 1201 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐵)
101 xrleloe 13040 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
10232, 2, 101sylancr 587 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
103100, 102mpbid 232 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 < 𝐵 ∨ 0 = 𝐵))
10480, 99, 103mpjaodan 960 1 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  (class class class)co 7346  cr 11002  0cc0 11003  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143  cle 11144  -𝑒cxne 13005   +𝑒 cxad 13006   ·e cxmu 13007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-xneg 13008  df-xadd 13009  df-xmul 13010
This theorem is referenced by:  xadddi2r  13194
  Copyright terms: Public domain W3C validator