MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi2 Structured version   Visualization version   GIF version

Theorem xadddi2 12691
Description: The assumption that the multiplier be real in xadddi 12689 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddi2
StepHypRef Expression
1 simpr 487 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simp2l 1195 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
32ad2antrr 724 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
4 simp3l 1197 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
54ad2antrr 724 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → 𝐶 ∈ ℝ*)
6 xadddi 12689 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
71, 3, 5, 6syl3anc 1367 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
8 pnfxr 10695 . . . . . 6 +∞ ∈ ℝ*
94adantr 483 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ*)
10 xmulcl 12667 . . . . . 6 ((+∞ ∈ ℝ*𝐶 ∈ ℝ*) → (+∞ ·e 𝐶) ∈ ℝ*)
118, 9, 10sylancr 589 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ∈ ℝ*)
12 simpl3r 1225 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ 𝐶)
13 0lepnf 12528 . . . . . . . . 9 0 ≤ +∞
14 xmulge0 12678 . . . . . . . . 9 (((+∞ ∈ ℝ* ∧ 0 ≤ +∞) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ (+∞ ·e 𝐶))
158, 13, 14mpanl12 700 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 0 ≤ (+∞ ·e 𝐶))
164, 12, 15syl2an2r 683 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ≤ (+∞ ·e 𝐶))
17 ge0nemnf 12567 . . . . . . 7 (((+∞ ·e 𝐶) ∈ ℝ* ∧ 0 ≤ (+∞ ·e 𝐶)) → (+∞ ·e 𝐶) ≠ -∞)
1811, 16, 17syl2anc 586 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐶) ≠ -∞)
1918adantr 483 . . . . 5 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ ·e 𝐶) ≠ -∞)
20 xaddpnf2 12621 . . . . 5 (((+∞ ·e 𝐶) ∈ ℝ* ∧ (+∞ ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
2111, 19, 20syl2an2r 683 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (+∞ +𝑒 (+∞ ·e 𝐶)) = +∞)
22 oveq1 7163 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
23 oveq1 7163 . . . . . 6 (𝐴 = +∞ → (𝐴 ·e 𝐶) = (+∞ ·e 𝐶))
2422, 23oveq12d 7174 . . . . 5 (𝐴 = +∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)))
25 xmulpnf2 12669 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
262, 25sylan 582 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
2726oveq1d 7171 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐵) +𝑒 (+∞ ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
2824, 27sylan9eqr 2878 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (+∞ +𝑒 (+∞ ·e 𝐶)))
29 oveq1 7163 . . . . 5 (𝐴 = +∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (+∞ ·e (𝐵 +𝑒 𝐶)))
30 xaddcl 12633 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
312, 4, 30syl2anc 586 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
32 0xr 10688 . . . . . . . 8 0 ∈ ℝ*
3332a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 ∈ ℝ*)
342adantr 483 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ*)
3531adantr 483 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
36 simpr 487 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < 𝐵)
3734xaddid1d 12637 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) = 𝐵)
38 xleadd2a 12648 . . . . . . . . 9 (((0 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 0 ≤ 𝐶) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
3933, 9, 34, 12, 38syl31anc 1369 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐵 +𝑒 0) ≤ (𝐵 +𝑒 𝐶))
4037, 39eqbrtrrd 5090 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
4133, 34, 35, 36, 40xrltletrd 12555 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 0 < (𝐵 +𝑒 𝐶))
42 xmulpnf2 12669 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4331, 41, 42syl2an2r 683 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (+∞ ·e (𝐵 +𝑒 𝐶)) = +∞)
4429, 43sylan9eqr 2878 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = +∞)
4521, 28, 443eqtr4rd 2867 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
46 mnfxr 10698 . . . . . . 7 -∞ ∈ ℝ*
47 xmulcl 12667 . . . . . . 7 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-∞ ·e 𝐶) ∈ ℝ*)
4846, 9, 47sylancr 589 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ∈ ℝ*)
49 xnegmnf 12604 . . . . . . . . . . . 12 -𝑒-∞ = +∞
5049oveq1i 7166 . . . . . . . . . . 11 (-𝑒-∞ ·e 𝐶) = (+∞ ·e 𝐶)
51 xmulneg1 12663 . . . . . . . . . . . 12 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
5246, 9, 51sylancr 589 . . . . . . . . . . 11 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒-∞ ·e 𝐶) = -𝑒(-∞ ·e 𝐶))
5350, 52syl5reqr 2871 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒(-∞ ·e 𝐶) = (+∞ ·e 𝐶))
54 xnegpnf 12603 . . . . . . . . . . 11 -𝑒+∞ = -∞
5554a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → -𝑒+∞ = -∞)
5653, 55eqeq12d 2837 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (+∞ ·e 𝐶) = -∞))
57 xneg11 12609 . . . . . . . . . 10 (((-∞ ·e 𝐶) ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
5848, 8, 57sylancl 588 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-𝑒(-∞ ·e 𝐶) = -𝑒+∞ ↔ (-∞ ·e 𝐶) = +∞))
5956, 58bitr3d 283 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) = -∞ ↔ (-∞ ·e 𝐶) = +∞))
6059necon3bid 3060 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((+∞ ·e 𝐶) ≠ -∞ ↔ (-∞ ·e 𝐶) ≠ +∞))
6118, 60mpbid 234 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐶) ≠ +∞)
62 xaddmnf2 12623 . . . . . 6 (((-∞ ·e 𝐶) ∈ ℝ* ∧ (-∞ ·e 𝐶) ≠ +∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6348, 61, 62syl2anc 586 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
6463adantr 483 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (-∞ +𝑒 (-∞ ·e 𝐶)) = -∞)
65 oveq1 7163 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐵) = (-∞ ·e 𝐵))
66 oveq1 7163 . . . . . 6 (𝐴 = -∞ → (𝐴 ·e 𝐶) = (-∞ ·e 𝐶))
6765, 66oveq12d 7174 . . . . 5 (𝐴 = -∞ → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)))
68 xmulmnf2 12671 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
692, 68sylan 582 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e 𝐵) = -∞)
7069oveq1d 7171 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → ((-∞ ·e 𝐵) +𝑒 (-∞ ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
7167, 70sylan9eqr 2878 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-∞ +𝑒 (-∞ ·e 𝐶)))
72 oveq1 7163 . . . . 5 (𝐴 = -∞ → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (-∞ ·e (𝐵 +𝑒 𝐶)))
73 xmulmnf2 12671 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ 0 < (𝐵 +𝑒 𝐶)) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7431, 41, 73syl2an2r 683 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (-∞ ·e (𝐵 +𝑒 𝐶)) = -∞)
7572, 74sylan9eqr 2878 . . . 4 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = -∞)
7664, 71, 753eqtr4rd 2867 . . 3 ((((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) ∧ 𝐴 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
77 simpl1 1187 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ*)
78 elxr 12512 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7977, 78sylib 220 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
807, 45, 76, 79mpjao3dan 1427 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 < 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
81 simp1 1132 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
82 xmulcl 12667 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
8381, 4, 82syl2anc 586 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 𝐶) ∈ ℝ*)
8483adantr 483 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐶) ∈ ℝ*)
85 xaddid2 12636 . . . 4 ((𝐴 ·e 𝐶) ∈ ℝ* → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
8684, 85syl 17 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (0 +𝑒 (𝐴 ·e 𝐶)) = (𝐴 ·e 𝐶))
87 oveq2 7164 . . . . . 6 (0 = 𝐵 → (𝐴 ·e 0) = (𝐴 ·e 𝐵))
8887eqcomd 2827 . . . . 5 (0 = 𝐵 → (𝐴 ·e 𝐵) = (𝐴 ·e 0))
89 xmul01 12661 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
90893ad2ant1 1129 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e 0) = 0)
9188, 90sylan9eqr 2878 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e 𝐵) = 0)
9291oveq1d 7171 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (0 +𝑒 (𝐴 ·e 𝐶)))
93 oveq1 7163 . . . . . 6 (0 = 𝐵 → (0 +𝑒 𝐶) = (𝐵 +𝑒 𝐶))
9493eqcomd 2827 . . . . 5 (0 = 𝐵 → (𝐵 +𝑒 𝐶) = (0 +𝑒 𝐶))
95 xaddid2 12636 . . . . . 6 (𝐶 ∈ ℝ* → (0 +𝑒 𝐶) = 𝐶)
964, 95syl 17 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 +𝑒 𝐶) = 𝐶)
9794, 96sylan9eqr 2878 . . . 4 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐵 +𝑒 𝐶) = 𝐶)
9897oveq2d 7172 . . 3 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 𝐶))
9986, 92, 983eqtr4rd 2867 . 2 (((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 0 = 𝐵) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
100 simp2r 1196 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐵)
101 xrleloe 12538 . . . 4 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
10232, 2, 101sylancr 589 . . 3 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
103100, 102mpbid 234 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (0 < 𝐵 ∨ 0 = 𝐵))
10480, 99, 103mpjaodan 955 1 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  (class class class)co 7156  cr 10536  0cc0 10537  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  -𝑒cxne 12505   +𝑒 cxad 12506   ·e cxmu 12507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-xneg 12508  df-xadd 12509  df-xmul 12510
This theorem is referenced by:  xadddi2r  12692
  Copyright terms: Public domain W3C validator