MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlesubadd Structured version   Visualization version   GIF version

Theorem xlesubadd 13008
Description: Under certain conditions, the conclusion of lesubadd 11458 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xlesubadd (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))

Proof of Theorem xlesubadd
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
2 simpl2 1191 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
3 xnegcl 12958 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
42, 3syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 12984 . . . . . 6 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
61, 4, 5syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
76adantr 481 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpll3 1213 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ*)
9 simpr 485 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
10 xleadd1 13000 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
117, 8, 9, 10syl3anc 1370 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
12 xnpcan 12997 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
131, 12sylan 580 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1413breq1d 5089 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵)))
1511, 14bitrd 278 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
16 simpr3 1195 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
17 oveq1 7279 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
18 pnfaddmnf 12975 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
1917, 18eqtrdi 2796 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
2019breq1d 5089 . . . . . . 7 (𝐴 = +∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ 0 ≤ 𝐶))
2116, 20syl5ibrcom 246 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 = +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
22 xaddmnf1 12973 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2322ex 413 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
241, 23syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
25 simpl3 1192 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
26 mnfle 12881 . . . . . . . . 9 (𝐶 ∈ ℝ* → -∞ ≤ 𝐶)
2725, 26syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -∞ ≤ 𝐶)
28 breq1 5082 . . . . . . . 8 ((𝐴 +𝑒 -∞) = -∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ -∞ ≤ 𝐶))
2927, 28syl5ibrcom 246 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) = -∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
3024, 29syld 47 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
3121, 30pm2.61dne 3033 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -∞) ≤ 𝐶)
32 pnfge 12877 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
331, 32syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ +∞)
34 ge0nemnf 12918 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
3525, 16, 34syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ≠ -∞)
36 xaddpnf1 12971 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
3725, 35, 36syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐶 +𝑒 +∞) = +∞)
3833, 37breqtrrd 5107 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ (𝐶 +𝑒 +∞))
3931, 382thd 264 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞)))
40 xnegeq 12952 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
41 xnegpnf 12954 . . . . . . . 8 -𝑒+∞ = -∞
4240, 41eqtrdi 2796 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4342oveq2d 7288 . . . . . 6 (𝐵 = +∞ → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4443breq1d 5089 . . . . 5 (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ (𝐴 +𝑒 -∞) ≤ 𝐶))
45 oveq2 7280 . . . . . 6 (𝐵 = +∞ → (𝐶 +𝑒 𝐵) = (𝐶 +𝑒 +∞))
4645breq2d 5091 . . . . 5 (𝐵 = +∞ → (𝐴 ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 +∞)))
4744, 46bibi12d 346 . . . 4 (𝐵 = +∞ → (((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)) ↔ ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞))))
4839, 47syl5ibrcom 246 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵))))
4948imp 407 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
50 simpr2 1194 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ≠ -∞)
512, 50jca 512 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
52 xrnemnf 12864 . . 3 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5351, 52sylib 217 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5415, 49, 53mpjaodan 956 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  (class class class)co 7272  cr 10881  0cc0 10882  +∞cpnf 11017  -∞cmnf 11018  *cxr 11019  cle 11021  -𝑒cxne 12856   +𝑒 cxad 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-1st 7825  df-2nd 7826  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-xneg 12859  df-xadd 12860
This theorem is referenced by:  xmetrtri  23519  metdstri  24025  metdscnlem  24029
  Copyright terms: Public domain W3C validator