MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlesubadd Structured version   Visualization version   GIF version

Theorem xlesubadd 13162
Description: Under certain conditions, the conclusion of lesubadd 11589 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xlesubadd (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))

Proof of Theorem xlesubadd
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
2 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
3 xnegcl 13112 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
42, 3syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 13138 . . . . . 6 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
61, 4, 5syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
76adantr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpll3 1215 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ*)
9 simpr 484 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
10 xleadd1 13154 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
117, 8, 9, 10syl3anc 1373 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
12 xnpcan 13151 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
131, 12sylan 580 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1413breq1d 5099 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵)))
1511, 14bitrd 279 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
16 simpr3 1197 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
17 oveq1 7353 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
18 pnfaddmnf 13129 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
1917, 18eqtrdi 2782 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
2019breq1d 5099 . . . . . . 7 (𝐴 = +∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ 0 ≤ 𝐶))
2116, 20syl5ibrcom 247 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 = +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
22 xaddmnf1 13127 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2322ex 412 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
241, 23syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
25 simpl3 1194 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
26 mnfle 13034 . . . . . . . . 9 (𝐶 ∈ ℝ* → -∞ ≤ 𝐶)
2725, 26syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -∞ ≤ 𝐶)
28 breq1 5092 . . . . . . . 8 ((𝐴 +𝑒 -∞) = -∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ -∞ ≤ 𝐶))
2927, 28syl5ibrcom 247 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) = -∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
3024, 29syld 47 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
3121, 30pm2.61dne 3014 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -∞) ≤ 𝐶)
32 pnfge 13029 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
331, 32syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ +∞)
34 ge0nemnf 13072 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
3525, 16, 34syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ≠ -∞)
36 xaddpnf1 13125 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
3725, 35, 36syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐶 +𝑒 +∞) = +∞)
3833, 37breqtrrd 5117 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ (𝐶 +𝑒 +∞))
3931, 382thd 265 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞)))
40 xnegeq 13106 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
41 xnegpnf 13108 . . . . . . . 8 -𝑒+∞ = -∞
4240, 41eqtrdi 2782 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4342oveq2d 7362 . . . . . 6 (𝐵 = +∞ → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4443breq1d 5099 . . . . 5 (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ (𝐴 +𝑒 -∞) ≤ 𝐶))
45 oveq2 7354 . . . . . 6 (𝐵 = +∞ → (𝐶 +𝑒 𝐵) = (𝐶 +𝑒 +∞))
4645breq2d 5101 . . . . 5 (𝐵 = +∞ → (𝐴 ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 +∞)))
4744, 46bibi12d 345 . . . 4 (𝐵 = +∞ → (((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)) ↔ ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞))))
4839, 47syl5ibrcom 247 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵))))
4948imp 406 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
50 simpr2 1196 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ≠ -∞)
512, 50jca 511 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
52 xrnemnf 13016 . . 3 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5351, 52sylib 218 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5415, 49, 53mpjaodan 960 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145  cle 11147  -𝑒cxne 13008   +𝑒 cxad 13009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-xneg 13011  df-xadd 13012
This theorem is referenced by:  xmetrtri  24270  metdstri  24767  metdscnlem  24771
  Copyright terms: Public domain W3C validator