MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlesubadd Structured version   Visualization version   GIF version

Theorem xlesubadd 13305
Description: Under certain conditions, the conclusion of lesubadd 11735 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xlesubadd (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))

Proof of Theorem xlesubadd
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
2 simpl2 1193 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
3 xnegcl 13255 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
42, 3syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 13281 . . . . . 6 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
61, 4, 5syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
76adantr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpll3 1215 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ*)
9 simpr 484 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
10 xleadd1 13297 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
117, 8, 9, 10syl3anc 1373 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
12 xnpcan 13294 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
131, 12sylan 580 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1413breq1d 5153 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵)))
1511, 14bitrd 279 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
16 simpr3 1197 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
17 oveq1 7438 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
18 pnfaddmnf 13272 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
1917, 18eqtrdi 2793 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
2019breq1d 5153 . . . . . . 7 (𝐴 = +∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ 0 ≤ 𝐶))
2116, 20syl5ibrcom 247 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 = +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
22 xaddmnf1 13270 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2322ex 412 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
241, 23syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
25 simpl3 1194 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
26 mnfle 13177 . . . . . . . . 9 (𝐶 ∈ ℝ* → -∞ ≤ 𝐶)
2725, 26syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -∞ ≤ 𝐶)
28 breq1 5146 . . . . . . . 8 ((𝐴 +𝑒 -∞) = -∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ -∞ ≤ 𝐶))
2927, 28syl5ibrcom 247 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) = -∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
3024, 29syld 47 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
3121, 30pm2.61dne 3028 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -∞) ≤ 𝐶)
32 pnfge 13172 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
331, 32syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ +∞)
34 ge0nemnf 13215 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
3525, 16, 34syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ≠ -∞)
36 xaddpnf1 13268 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
3725, 35, 36syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐶 +𝑒 +∞) = +∞)
3833, 37breqtrrd 5171 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ (𝐶 +𝑒 +∞))
3931, 382thd 265 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞)))
40 xnegeq 13249 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
41 xnegpnf 13251 . . . . . . . 8 -𝑒+∞ = -∞
4240, 41eqtrdi 2793 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4342oveq2d 7447 . . . . . 6 (𝐵 = +∞ → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4443breq1d 5153 . . . . 5 (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ (𝐴 +𝑒 -∞) ≤ 𝐶))
45 oveq2 7439 . . . . . 6 (𝐵 = +∞ → (𝐶 +𝑒 𝐵) = (𝐶 +𝑒 +∞))
4645breq2d 5155 . . . . 5 (𝐵 = +∞ → (𝐴 ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 +∞)))
4744, 46bibi12d 345 . . . 4 (𝐵 = +∞ → (((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)) ↔ ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞))))
4839, 47syl5ibrcom 247 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵))))
4948imp 406 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
50 simpr2 1196 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ≠ -∞)
512, 50jca 511 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
52 xrnemnf 13159 . . 3 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5351, 52sylib 218 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5415, 49, 53mpjaodan 961 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294  cle 11296  -𝑒cxne 13151   +𝑒 cxad 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-xneg 13154  df-xadd 13155
This theorem is referenced by:  xmetrtri  24365  metdstri  24873  metdscnlem  24877
  Copyright terms: Public domain W3C validator