MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegid Structured version   Visualization version   GIF version

Theorem xnegid 13140
Description: Extended real version of negid 11411. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegid (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)

Proof of Theorem xnegid
StepHypRef Expression
1 elxr 13018 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 13113 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
32oveq2d 7365 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴))
4 renegcl 11427 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
5 rexadd 13134 . . . . 5 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
64, 5mpdan 687 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
7 recn 11099 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
87negidd 11465 . . . 4 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
93, 6, 83eqtrd 2768 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0)
10 id 22 . . . . 5 (𝐴 = +∞ → 𝐴 = +∞)
11 xnegeq 13109 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
12 xnegpnf 13111 . . . . . 6 -𝑒+∞ = -∞
1311, 12eqtrdi 2780 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
1410, 13oveq12d 7367 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞))
15 pnfaddmnf 13132 . . . 4 (+∞ +𝑒 -∞) = 0
1614, 15eqtrdi 2780 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
17 id 22 . . . . 5 (𝐴 = -∞ → 𝐴 = -∞)
18 xnegeq 13109 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
19 xnegmnf 13112 . . . . . 6 -𝑒-∞ = +∞
2018, 19eqtrdi 2780 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2117, 20oveq12d 7367 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞))
22 mnfaddpnf 13133 . . . 4 (-∞ +𝑒 +∞) = 0
2321, 22eqtrdi 2780 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
249, 16, 233jaoi 1430 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0)
251, 24sylbi 217 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1540  wcel 2109  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148  -cneg 11348  -𝑒cxne 13011   +𝑒 cxad 13012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-sub 11349  df-neg 11350  df-xneg 13014  df-xadd 13015
This theorem is referenced by:  xrsxmet  24696  xaddeq0  32696  xlt2addrd  32702  xrge0npcan  32974  carsgclctunlem2  34287
  Copyright terms: Public domain W3C validator