Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegid | Structured version Visualization version GIF version |
Description: Extended real version of negid 10976. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12557 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 12650 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | 2 | oveq2d 7171 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴)) |
4 | renegcl 10992 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
5 | rexadd 12671 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) | |
6 | 4, 5 | mpdan 686 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) |
7 | recn 10670 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
8 | 7 | negidd 11030 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0) |
9 | 3, 6, 8 | 3eqtrd 2797 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
10 | id 22 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
11 | xnegeq 12646 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
12 | xnegpnf 12648 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
13 | 11, 12 | eqtrdi 2809 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
14 | 10, 13 | oveq12d 7173 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞)) |
15 | pnfaddmnf 12669 | . . . 4 ⊢ (+∞ +𝑒 -∞) = 0 | |
16 | 14, 15 | eqtrdi 2809 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
17 | id 22 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
18 | xnegeq 12646 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
19 | xnegmnf 12649 | . . . . . 6 ⊢ -𝑒-∞ = +∞ | |
20 | 18, 19 | eqtrdi 2809 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
21 | 17, 20 | oveq12d 7173 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞)) |
22 | mnfaddpnf 12670 | . . . 4 ⊢ (-∞ +𝑒 +∞) = 0 | |
23 | 21, 22 | eqtrdi 2809 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
24 | 9, 16, 23 | 3jaoi 1424 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0) |
25 | 1, 24 | sylbi 220 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1083 = wceq 1538 ∈ wcel 2111 (class class class)co 7155 ℝcr 10579 0cc0 10580 + caddc 10583 +∞cpnf 10715 -∞cmnf 10716 ℝ*cxr 10717 -cneg 10914 -𝑒cxne 12550 +𝑒 cxad 12551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-sub 10915 df-neg 10916 df-xneg 12553 df-xadd 12554 |
This theorem is referenced by: xrsxmet 23515 xaddeq0 30604 xlt2addrd 30609 xrge0npcan 30833 carsgclctunlem2 31809 |
Copyright terms: Public domain | W3C validator |