MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegid Structured version   Visualization version   GIF version

Theorem xnegid 13222
Description: Extended real version of negid 11512. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegid (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)

Proof of Theorem xnegid
StepHypRef Expression
1 elxr 13101 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 13195 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
32oveq2d 7428 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴))
4 renegcl 11528 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
5 rexadd 13216 . . . . 5 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
64, 5mpdan 684 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
7 recn 11204 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
87negidd 11566 . . . 4 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
93, 6, 83eqtrd 2775 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0)
10 id 22 . . . . 5 (𝐴 = +∞ → 𝐴 = +∞)
11 xnegeq 13191 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
12 xnegpnf 13193 . . . . . 6 -𝑒+∞ = -∞
1311, 12eqtrdi 2787 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
1410, 13oveq12d 7430 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞))
15 pnfaddmnf 13214 . . . 4 (+∞ +𝑒 -∞) = 0
1614, 15eqtrdi 2787 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
17 id 22 . . . . 5 (𝐴 = -∞ → 𝐴 = -∞)
18 xnegeq 13191 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
19 xnegmnf 13194 . . . . . 6 -𝑒-∞ = +∞
2018, 19eqtrdi 2787 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2117, 20oveq12d 7430 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞))
22 mnfaddpnf 13215 . . . 4 (-∞ +𝑒 +∞) = 0
2321, 22eqtrdi 2787 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
249, 16, 233jaoi 1426 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0)
251, 24sylbi 216 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1540  wcel 2105  (class class class)co 7412  cr 11113  0cc0 11114   + caddc 11117  +∞cpnf 11250  -∞cmnf 11251  *cxr 11252  -cneg 11450  -𝑒cxne 13094   +𝑒 cxad 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-sub 11451  df-neg 11452  df-xneg 13097  df-xadd 13098
This theorem is referenced by:  xrsxmet  24546  xaddeq0  32234  xlt2addrd  32239  xrge0npcan  32463  carsgclctunlem2  33617
  Copyright terms: Public domain W3C validator