Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegid Structured version   Visualization version   GIF version

Theorem xnegid 12677
 Description: Extended real version of negid 10976. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegid (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)

Proof of Theorem xnegid
StepHypRef Expression
1 elxr 12557 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 12650 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
32oveq2d 7171 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴))
4 renegcl 10992 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
5 rexadd 12671 . . . . 5 ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
64, 5mpdan 686 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴))
7 recn 10670 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
87negidd 11030 . . . 4 (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0)
93, 6, 83eqtrd 2797 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0)
10 id 22 . . . . 5 (𝐴 = +∞ → 𝐴 = +∞)
11 xnegeq 12646 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
12 xnegpnf 12648 . . . . . 6 -𝑒+∞ = -∞
1311, 12eqtrdi 2809 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
1410, 13oveq12d 7173 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞))
15 pnfaddmnf 12669 . . . 4 (+∞ +𝑒 -∞) = 0
1614, 15eqtrdi 2809 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
17 id 22 . . . . 5 (𝐴 = -∞ → 𝐴 = -∞)
18 xnegeq 12646 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
19 xnegmnf 12649 . . . . . 6 -𝑒-∞ = +∞
2018, 19eqtrdi 2809 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2117, 20oveq12d 7173 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞))
22 mnfaddpnf 12670 . . . 4 (-∞ +𝑒 +∞) = 0
2321, 22eqtrdi 2809 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0)
249, 16, 233jaoi 1424 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0)
251, 24sylbi 220 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ w3o 1083   = wceq 1538   ∈ wcel 2111  (class class class)co 7155  ℝcr 10579  0cc0 10580   + caddc 10583  +∞cpnf 10715  -∞cmnf 10716  ℝ*cxr 10717  -cneg 10914  -𝑒cxne 12550   +𝑒 cxad 12551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-po 5446  df-so 5447  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-sub 10915  df-neg 10916  df-xneg 12553  df-xadd 12554 This theorem is referenced by:  xrsxmet  23515  xaddeq0  30604  xlt2addrd  30609  xrge0npcan  30833  carsgclctunlem2  31809
 Copyright terms: Public domain W3C validator