| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegid | Structured version Visualization version GIF version | ||
| Description: Extended real version of negid 11408. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 13015 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | rexneg 13110 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
| 3 | 2 | oveq2d 7362 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = (𝐴 +𝑒 -𝐴)) |
| 4 | renegcl 11424 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 5 | rexadd 13131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) | |
| 6 | 4, 5 | mpdan 687 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝐴) = (𝐴 + -𝐴)) |
| 7 | recn 11096 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 8 | 7 | negidd 11462 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + -𝐴) = 0) |
| 9 | 3, 6, 8 | 3eqtrd 2770 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 10 | id 22 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 11 | xnegeq 13106 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
| 12 | xnegpnf 13108 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
| 13 | 11, 12 | eqtrdi 2782 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
| 14 | 10, 13 | oveq12d 7364 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞)) |
| 15 | pnfaddmnf 13129 | . . . 4 ⊢ (+∞ +𝑒 -∞) = 0 | |
| 16 | 14, 15 | eqtrdi 2782 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 17 | id 22 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 18 | xnegeq 13106 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
| 19 | xnegmnf 13109 | . . . . . 6 ⊢ -𝑒-∞ = +∞ | |
| 20 | 18, 19 | eqtrdi 2782 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
| 21 | 17, 20 | oveq12d 7364 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞)) |
| 22 | mnfaddpnf 13130 | . . . 4 ⊢ (-∞ +𝑒 +∞) = 0 | |
| 23 | 21, 22 | eqtrdi 2782 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 24 | 9, 16, 23 | 3jaoi 1430 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| 25 | 1, 24 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 0cc0 11006 + caddc 11009 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 -cneg 11345 -𝑒cxne 13008 +𝑒 cxad 13009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-sub 11346 df-neg 11347 df-xneg 13011 df-xadd 13012 |
| This theorem is referenced by: xrsxmet 24725 xaddeq0 32736 xlt2addrd 32742 xrge0npcan 33001 carsgclctunlem2 34332 |
| Copyright terms: Public domain | W3C validator |