Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmulmnf1 | Structured version Visualization version GIF version |
Description: Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulmnf1 | ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegpnf 12872 | . . 3 ⊢ -𝑒+∞ = -∞ | |
2 | 1 | oveq2i 7266 | . 2 ⊢ (𝐴 ·e -𝑒+∞) = (𝐴 ·e -∞) |
3 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ∈ ℝ*) | |
4 | pnfxr 10960 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | xmulneg2 12933 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e -𝑒+∞) = -𝑒(𝐴 ·e +∞)) | |
6 | 3, 4, 5 | sylancl 585 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -𝑒+∞) = -𝑒(𝐴 ·e +∞)) |
7 | xmulpnf1 12937 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | |
8 | xnegeq 12870 | . . . . 5 ⊢ ((𝐴 ·e +∞) = +∞ → -𝑒(𝐴 ·e +∞) = -𝑒+∞) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → -𝑒(𝐴 ·e +∞) = -𝑒+∞) |
10 | 9, 1 | eqtrdi 2795 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → -𝑒(𝐴 ·e +∞) = -∞) |
11 | 6, 10 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -𝑒+∞) = -∞) |
12 | 2, 11 | eqtr3id 2793 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 -𝑒cxne 12774 ·e cxmu 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-xneg 12777 df-xmul 12779 |
This theorem is referenced by: xmulmnf2 12940 xadddilem 12957 |
Copyright terms: Public domain | W3C validator |