Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmulmnf1 | Structured version Visualization version GIF version |
Description: Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulmnf1 | ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegpnf 12925 | . . 3 ⊢ -𝑒+∞ = -∞ | |
2 | 1 | oveq2i 7279 | . 2 ⊢ (𝐴 ·e -𝑒+∞) = (𝐴 ·e -∞) |
3 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ∈ ℝ*) | |
4 | pnfxr 11013 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | xmulneg2 12986 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ·e -𝑒+∞) = -𝑒(𝐴 ·e +∞)) | |
6 | 3, 4, 5 | sylancl 585 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -𝑒+∞) = -𝑒(𝐴 ·e +∞)) |
7 | xmulpnf1 12990 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | |
8 | xnegeq 12923 | . . . . 5 ⊢ ((𝐴 ·e +∞) = +∞ → -𝑒(𝐴 ·e +∞) = -𝑒+∞) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → -𝑒(𝐴 ·e +∞) = -𝑒+∞) |
10 | 9, 1 | eqtrdi 2795 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → -𝑒(𝐴 ·e +∞) = -∞) |
11 | 6, 10 | eqtrd 2779 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -𝑒+∞) = -∞) |
12 | 2, 11 | eqtr3id 2793 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 0cc0 10855 +∞cpnf 10990 -∞cmnf 10991 ℝ*cxr 10992 < clt 10993 -𝑒cxne 12827 ·e cxmu 12829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-xneg 12830 df-xmul 12832 |
This theorem is referenced by: xmulmnf2 12993 xadddilem 13010 |
Copyright terms: Public domain | W3C validator |