| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iftrue 4506. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 4506 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: oe0m 8530 ttrcltr 9730 ttukeylem4 10526 xnegpnf 13225 xnegmnf 13226 xaddpnf1 13242 xaddpnf2 13243 xaddmnf1 13244 xaddmnf2 13245 pnfaddmnf 13246 mnfaddpnf 13247 xmul01 13283 exp0 14083 swrd00 14662 sgn0 15108 lcm0val 16613 prmo2 17060 prmo3 17061 prmo5 17148 mulg0 19057 zzngim 21513 obsipid 21682 mvrid 21944 mamulid 22379 mamurid 22380 mat1dimid 22412 scmatf1 22469 mdetdiagid 22538 chpdmatlem3 22778 chpidmat 22785 fclscmpi 23967 ioorinv 25529 ig1pval2 26134 dgrcolem2 26232 plydivlem4 26256 vieta1lem2 26271 0cxp 26627 cxpexp 26629 lgs0 27273 lgs2 27277 2lgs2 27368 left1s 27858 exps0 28365 axlowdim 28940 1loopgrvd2 29483 eupth2 30220 ex-prmo 30440 madjusmdetlem1 33858 signsw0glem 34585 breprexp 34665 ex-sategoelel 35443 rdgprc0 35811 bj-pr11val 37023 bj-pr22val 37037 mapdhval0 41744 hdmap1val0 41818 refsum2cnlem1 45061 liminf10ex 45803 cncfiooicclem1 45922 fouriersw 46260 hspmbllem1 46655 blen0 48552 0dig1 48589 |
| Copyright terms: Public domain | W3C validator |