![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version |
Description: Inference associated with iftrue 4554. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 | . 2 ⊢ 𝜑 | |
2 | iftrue 4554 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: oe0m 8574 ttrcltr 9785 ttukeylem4 10581 xnegpnf 13271 xnegmnf 13272 xaddpnf1 13288 xaddpnf2 13289 xaddmnf1 13290 xaddmnf2 13291 pnfaddmnf 13292 mnfaddpnf 13293 xmul01 13329 exp0 14116 swrd00 14692 sgn0 15138 lcm0val 16641 prmo2 17087 prmo3 17088 prmo5 17176 mulg0 19114 zzngim 21594 obsipid 21765 mvrid 22027 mamulid 22468 mamurid 22469 mat1dimid 22501 scmatf1 22558 mdetdiagid 22627 chpdmatlem3 22867 chpidmat 22874 fclscmpi 24058 ioorinv 25630 ig1pval2 26236 dgrcolem2 26334 plydivlem4 26356 vieta1lem2 26371 0cxp 26726 cxpexp 26728 lgs0 27372 lgs2 27376 2lgs2 27467 left1s 27951 exps0 28428 axlowdim 28994 1loopgrvd2 29539 eupth2 30271 ex-prmo 30491 madjusmdetlem1 33773 signsw0glem 34530 breprexp 34610 ex-sategoelel 35389 rdgprc0 35757 bj-pr11val 36971 bj-pr22val 36985 mapdhval0 41682 hdmap1val0 41756 refsum2cnlem1 44937 liminf10ex 45695 cncfiooicclem1 45814 fouriersw 46152 hspmbllem1 46547 blen0 48306 0dig1 48343 |
Copyright terms: Public domain | W3C validator |