| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iftrue 4494. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 4494 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: oe0m 8482 ttrcltr 9669 ttukeylem4 10465 xnegpnf 13169 xnegmnf 13170 xaddpnf1 13186 xaddpnf2 13187 xaddmnf1 13188 xaddmnf2 13189 pnfaddmnf 13190 mnfaddpnf 13191 xmul01 13227 exp0 14030 swrd00 14609 sgn0 15055 lcm0val 16564 prmo2 17011 prmo3 17012 prmo5 17099 mulg0 19006 zzngim 21462 obsipid 21631 mvrid 21893 mamulid 22328 mamurid 22329 mat1dimid 22361 scmatf1 22418 mdetdiagid 22487 chpdmatlem3 22727 chpidmat 22734 fclscmpi 23916 ioorinv 25477 ig1pval2 26082 dgrcolem2 26180 plydivlem4 26204 vieta1lem2 26219 0cxp 26575 cxpexp 26577 lgs0 27221 lgs2 27225 2lgs2 27316 left1s 27806 exps0 28313 axlowdim 28888 1loopgrvd2 29431 eupth2 30168 ex-prmo 30388 madjusmdetlem1 33817 signsw0glem 34544 breprexp 34624 ex-sategoelel 35408 rdgprc0 35781 bj-pr11val 36993 bj-pr22val 37007 mapdhval0 41719 hdmap1val0 41793 refsum2cnlem1 45031 liminf10ex 45772 cncfiooicclem1 45891 fouriersw 46229 hspmbllem1 46624 blen0 48561 0dig1 48598 |
| Copyright terms: Public domain | W3C validator |