| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iftrue 4497. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 4497 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: oe0m 8485 ttrcltr 9676 ttukeylem4 10472 xnegpnf 13176 xnegmnf 13177 xaddpnf1 13193 xaddpnf2 13194 xaddmnf1 13195 xaddmnf2 13196 pnfaddmnf 13197 mnfaddpnf 13198 xmul01 13234 exp0 14037 swrd00 14616 sgn0 15062 lcm0val 16571 prmo2 17018 prmo3 17019 prmo5 17106 mulg0 19013 zzngim 21469 obsipid 21638 mvrid 21900 mamulid 22335 mamurid 22336 mat1dimid 22368 scmatf1 22425 mdetdiagid 22494 chpdmatlem3 22734 chpidmat 22741 fclscmpi 23923 ioorinv 25484 ig1pval2 26089 dgrcolem2 26187 plydivlem4 26211 vieta1lem2 26226 0cxp 26582 cxpexp 26584 lgs0 27228 lgs2 27232 2lgs2 27323 left1s 27813 exps0 28320 axlowdim 28895 1loopgrvd2 29438 eupth2 30175 ex-prmo 30395 madjusmdetlem1 33824 signsw0glem 34551 breprexp 34631 ex-sategoelel 35415 rdgprc0 35788 bj-pr11val 37000 bj-pr22val 37014 mapdhval0 41726 hdmap1val0 41800 refsum2cnlem1 45038 liminf10ex 45779 cncfiooicclem1 45898 fouriersw 46236 hspmbllem1 46631 blen0 48565 0dig1 48602 |
| Copyright terms: Public domain | W3C validator |