| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iftrue 4490. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 4490 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4485 |
| This theorem is referenced by: oe0m 8459 ttrcltr 9645 ttukeylem4 10441 xnegpnf 13145 xnegmnf 13146 xaddpnf1 13162 xaddpnf2 13163 xaddmnf1 13164 xaddmnf2 13165 pnfaddmnf 13166 mnfaddpnf 13167 xmul01 13203 exp0 14006 swrd00 14585 sgn0 15031 lcm0val 16540 prmo2 16987 prmo3 16988 prmo5 17075 mulg0 18982 zzngim 21438 obsipid 21607 mvrid 21869 mamulid 22304 mamurid 22305 mat1dimid 22337 scmatf1 22394 mdetdiagid 22463 chpdmatlem3 22703 chpidmat 22710 fclscmpi 23892 ioorinv 25453 ig1pval2 26058 dgrcolem2 26156 plydivlem4 26180 vieta1lem2 26195 0cxp 26551 cxpexp 26553 lgs0 27197 lgs2 27201 2lgs2 27292 left1s 27782 exps0 28289 axlowdim 28864 1loopgrvd2 29407 eupth2 30141 ex-prmo 30361 madjusmdetlem1 33790 signsw0glem 34517 breprexp 34597 ex-sategoelel 35381 rdgprc0 35754 bj-pr11val 36966 bj-pr22val 36980 mapdhval0 41692 hdmap1val0 41766 refsum2cnlem1 45004 liminf10ex 45745 cncfiooicclem1 45864 fouriersw 46202 hspmbllem1 46597 blen0 48534 0dig1 48571 |
| Copyright terms: Public domain | W3C validator |