| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iftrue 4482. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 4482 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4477 |
| This theorem is referenced by: oe0m 8436 ttrcltr 9612 ttukeylem4 10406 xnegpnf 13111 xnegmnf 13112 xaddpnf1 13128 xaddpnf2 13129 xaddmnf1 13130 xaddmnf2 13131 pnfaddmnf 13132 mnfaddpnf 13133 xmul01 13169 exp0 13972 swrd00 14551 sgn0 14996 lcm0val 16505 prmo2 16952 prmo3 16953 prmo5 17040 mulg0 18953 zzngim 21459 obsipid 21629 mvrid 21891 mamulid 22326 mamurid 22327 mat1dimid 22359 scmatf1 22416 mdetdiagid 22485 chpdmatlem3 22725 chpidmat 22732 fclscmpi 23914 ioorinv 25475 ig1pval2 26080 dgrcolem2 26178 plydivlem4 26202 vieta1lem2 26217 0cxp 26573 cxpexp 26575 lgs0 27219 lgs2 27223 2lgs2 27314 left1s 27809 exps0 28319 axlowdim 28906 1loopgrvd2 29449 eupth2 30183 ex-prmo 30403 madjusmdetlem1 33794 signsw0glem 34521 breprexp 34601 ex-sategoelel 35394 rdgprc0 35767 bj-pr11val 36979 bj-pr22val 36993 mapdhval0 41704 hdmap1val0 41778 refsum2cnlem1 45015 liminf10ex 45755 cncfiooicclem1 45874 fouriersw 46212 hspmbllem1 46607 blen0 48557 0dig1 48594 |
| Copyright terms: Public domain | W3C validator |