Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version |
Description: Inference associated with iftrue 4471. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 | . 2 ⊢ 𝜑 | |
2 | iftrue 4471 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-if 4466 |
This theorem is referenced by: oe0m 8379 ttrcltr 9518 ttukeylem4 10314 xnegpnf 12989 xnegmnf 12990 xaddpnf1 13006 xaddpnf2 13007 xaddmnf1 13008 xaddmnf2 13009 pnfaddmnf 13010 mnfaddpnf 13011 xmul01 13047 exp0 13832 swrd00 14402 sgn0 14845 lcm0val 16344 prmo2 16786 prmo3 16787 prmo5 16875 mulg0 18752 zzngim 20805 obsipid 20974 mvrid 21237 mamulid 21635 mamurid 21636 mat1dimid 21668 scmatf1 21725 mdetdiagid 21794 chpdmatlem3 22034 chpidmat 22041 fclscmpi 23225 ioorinv 24785 ig1pval2 25383 dgrcolem2 25480 plydivlem4 25501 vieta1lem2 25516 0cxp 25866 cxpexp 25868 lgs0 26503 lgs2 26507 2lgs2 26598 axlowdim 27374 1loopgrvd2 27915 eupth2 28648 ex-prmo 28868 madjusmdetlem1 31822 signsw0glem 32577 breprexp 32658 ex-sategoelel 33428 rdgprc0 33814 bj-pr11val 35239 bj-pr22val 35253 mapdhval0 39781 hdmap1val0 39855 refsum2cnlem1 42618 liminf10ex 43364 cncfiooicclem1 43483 fouriersw 43821 hspmbllem1 44214 blen0 45976 0dig1 46013 |
Copyright terms: Public domain | W3C validator |