![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version |
Description: Inference associated with iftrue 4387. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 | . 2 ⊢ 𝜑 | |
2 | iftrue 4387 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ifcif 4381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-if 4382 |
This theorem is referenced by: oe0m 7994 ttukeylem4 9780 xnegpnf 12452 xnegmnf 12453 xaddpnf1 12469 xaddpnf2 12470 xaddmnf1 12471 xaddmnf2 12472 pnfaddmnf 12473 mnfaddpnf 12474 xmul01 12510 exp0 13283 swrd00 13842 sgn0 14282 lcm0val 15767 prmo2 16205 prmo3 16206 prmo5 16291 mulg0 17988 mvrid 19891 zzngim 20381 obsipid 20548 mamulid 20734 mamurid 20735 mat1dimid 20767 scmatf1 20824 mdetdiagid 20893 chpdmatlem3 21132 chpidmat 21139 fclscmpi 22321 ioorinv 23860 ig1pval2 24450 dgrcolem2 24547 plydivlem4 24568 vieta1lem2 24583 0cxp 24930 cxpexp 24932 lgs0 25568 lgs2 25572 2lgs2 25663 axlowdim 26430 1loopgrvd2 26968 eupth2 27706 ex-prmo 27930 madjusmdetlem1 30707 signsw0glem 31440 breprexp 31521 ex-sategoelel 32276 rdgprc0 32647 bj-pr11val 33922 bj-pr22val 33936 mapdhval0 38392 hdmap1val0 38466 refsum2cnlem1 40833 liminf10ex 41597 cncfiooicclem1 41717 fouriersw 42058 hspmbllem1 42450 blen0 44113 0dig1 44150 |
Copyright terms: Public domain | W3C validator |