Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version |
Description: Inference associated with iftrue 4470. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 | . 2 ⊢ 𝜑 | |
2 | iftrue 4470 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ifcif 4464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-if 4465 |
This theorem is referenced by: oe0m 8324 ttrcltr 9435 ttukeylem4 10252 xnegpnf 12925 xnegmnf 12926 xaddpnf1 12942 xaddpnf2 12943 xaddmnf1 12944 xaddmnf2 12945 pnfaddmnf 12946 mnfaddpnf 12947 xmul01 12983 exp0 13767 swrd00 14338 sgn0 14781 lcm0val 16280 prmo2 16722 prmo3 16723 prmo5 16811 mulg0 18688 zzngim 20741 obsipid 20910 mvrid 21173 mamulid 21571 mamurid 21572 mat1dimid 21604 scmatf1 21661 mdetdiagid 21730 chpdmatlem3 21970 chpidmat 21977 fclscmpi 23161 ioorinv 24721 ig1pval2 25319 dgrcolem2 25416 plydivlem4 25437 vieta1lem2 25452 0cxp 25802 cxpexp 25804 lgs0 26439 lgs2 26443 2lgs2 26534 axlowdim 27310 1loopgrvd2 27851 eupth2 28582 ex-prmo 28802 madjusmdetlem1 31756 signsw0glem 32511 breprexp 32592 ex-sategoelel 33362 rdgprc0 33748 bj-pr11val 35174 bj-pr22val 35188 mapdhval0 39718 hdmap1val0 39792 refsum2cnlem1 42533 liminf10ex 43269 cncfiooicclem1 43388 fouriersw 43726 hspmbllem1 44118 blen0 45870 0dig1 45907 |
Copyright terms: Public domain | W3C validator |