| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iftruei | Structured version Visualization version GIF version | ||
| Description: Inference associated with iftrue 4476. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 4476 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ifcif 4470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4471 |
| This theorem is referenced by: oe0m 8428 ttrcltr 9601 ttukeylem4 10398 xnegpnf 13103 xnegmnf 13104 xaddpnf1 13120 xaddpnf2 13121 xaddmnf1 13122 xaddmnf2 13123 pnfaddmnf 13124 mnfaddpnf 13125 xmul01 13161 exp0 13967 swrd00 14547 sgn0 14991 lcm0val 16500 prmo2 16947 prmo3 16948 prmo5 17035 mulg0 18982 zzngim 21484 obsipid 21654 mvrid 21916 mamulid 22351 mamurid 22352 mat1dimid 22384 scmatf1 22441 mdetdiagid 22510 chpdmatlem3 22750 chpidmat 22757 fclscmpi 23939 ioorinv 25499 ig1pval2 26104 dgrcolem2 26202 plydivlem4 26226 vieta1lem2 26241 0cxp 26597 cxpexp 26599 lgs0 27243 lgs2 27247 2lgs2 27338 left1s 27835 exps0 28345 axlowdim 28934 1loopgrvd2 29477 eupth2 30211 ex-prmo 30431 madjusmdetlem1 33832 signsw0glem 34558 breprexp 34638 ex-sategoelel 35457 rdgprc0 35827 bj-pr11val 37039 bj-pr22val 37053 mapdhval0 41764 hdmap1val0 41838 refsum2cnlem1 45074 liminf10ex 45812 cncfiooicclem1 45931 fouriersw 46269 hspmbllem1 46664 blen0 48604 0dig1 48641 |
| Copyright terms: Public domain | W3C validator |