MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclblem Structured version   Visualization version   GIF version

Theorem xrsdsreclblem 21409
Description: Lemma for xrsdsreclb 21410. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclblem (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclblem
StepHypRef Expression
1 necom 2984 . . . . 5 (𝐴𝐵𝐵𝐴)
2 xrleltne 13178 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
3 mnfxr 11321 . . . . . . . . . . . 12 -∞ ∈ ℝ*
43a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ∈ ℝ*)
5 simpl1 1188 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ*)
6 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ*)
7 pnfnre 11305 . . . . . . . . . . . . . 14 +∞ ∉ ℝ
87neli 3038 . . . . . . . . . . . . 13 ¬ +∞ ∈ ℝ
9 mnfle 13168 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
105, 9syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ≤ 𝐴)
11 simpl3 1190 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < 𝐵)
124, 5, 6, 10, 11xrlelttrd 13193 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐵)
13 xrltne 13196 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → 𝐵 ≠ -∞)
144, 6, 12, 13syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≠ -∞)
15 xaddpnf1 13259 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
166, 14, 15syl2anc 582 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
1716eleq1d 2811 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((𝐵 +𝑒 +∞) ∈ ℝ ↔ +∞ ∈ ℝ))
188, 17mtbiri 326 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (𝐵 +𝑒 +∞) ∈ ℝ)
19 ngtmnft 13199 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
205, 19syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
21 simpr 483 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ)
22 xnegeq 13240 . . . . . . . . . . . . . . . . 17 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
23 xnegmnf 13243 . . . . . . . . . . . . . . . . 17 -𝑒-∞ = +∞
2422, 23eqtrdi 2782 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2524oveq2d 7440 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 +∞))
2625eleq1d 2811 . . . . . . . . . . . . . 14 (𝐴 = -∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (𝐵 +𝑒 +∞) ∈ ℝ))
2721, 26syl5ibcom 244 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ → (𝐵 +𝑒 +∞) ∈ ℝ))
2820, 27sylbird 259 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ -∞ < 𝐴 → (𝐵 +𝑒 +∞) ∈ ℝ))
2918, 28mt3d 148 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐴)
30 xrre2 13203 . . . . . . . . . . 11 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
314, 5, 6, 29, 11, 30syl32anc 1375 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
32 pnfxr 11318 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → +∞ ∈ ℝ*)
345xnegcld 13333 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ∈ ℝ*)
35 xnegpnf 13242 . . . . . . . . . . . . . . . . 17 -𝑒+∞ = -∞
36 pnfge 13164 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
376, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≤ +∞)
385, 6, 33, 11, 37xrltletrd 13194 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < +∞)
39 xltnegi 13249 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → -𝑒+∞ < -𝑒𝐴)
405, 33, 38, 39syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒+∞ < -𝑒𝐴)
4135, 40eqbrtrrid 5189 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < -𝑒𝐴)
42 xrltne 13196 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ* ∧ -∞ < -𝑒𝐴) → -𝑒𝐴 ≠ -∞)
434, 34, 41, 42syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ≠ -∞)
44 xaddpnf2 13260 . . . . . . . . . . . . . . 15 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4534, 43, 44syl2anc 582 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4645eleq1d 2811 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((+∞ +𝑒 -𝑒𝐴) ∈ ℝ ↔ +∞ ∈ ℝ))
478, 46mtbiri 326 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ)
48 nltpnft 13197 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
496, 48syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
50 oveq1 7431 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -𝑒𝐴))
5150eleq1d 2811 . . . . . . . . . . . . . 14 (𝐵 = +∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5221, 51syl5ibcom 244 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5349, 52sylbird 259 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ 𝐵 < +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5447, 53mt3d 148 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 < +∞)
55 xrre2 13203 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
565, 6, 33, 11, 54, 55syl32anc 1375 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5731, 56jca 510 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5857ex 411 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
59583expia 1118 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
60593adant3 1129 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
612, 60sylbird 259 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵𝐴 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
621, 61biimtrid 241 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
63623exp 1116 . . 3 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
6463com34 91 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
65643imp1 1344 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  cfv 6554  (class class class)co 7424  cr 11157  +∞cpnf 11295  -∞cmnf 11296  *cxr 11297   < clt 11298  cle 11299  -𝑒cxne 13143   +𝑒 cxad 13144  distcds 17275  *𝑠cxrs 17515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-xneg 13146  df-xadd 13147
This theorem is referenced by:  xrsdsreclb  21410
  Copyright terms: Public domain W3C validator