MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclblem Structured version   Visualization version   GIF version

Theorem xrsdsreclblem 21349
Description: Lemma for xrsdsreclb 21350. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclblem (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclblem
StepHypRef Expression
1 necom 2981 . . . . 5 (𝐴𝐵𝐵𝐴)
2 xrleltne 13044 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
3 mnfxr 11169 . . . . . . . . . . . 12 -∞ ∈ ℝ*
43a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ∈ ℝ*)
5 simpl1 1192 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ*)
6 simpl2 1193 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ*)
7 pnfnre 11153 . . . . . . . . . . . . . 14 +∞ ∉ ℝ
87neli 3034 . . . . . . . . . . . . 13 ¬ +∞ ∈ ℝ
9 mnfle 13034 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
105, 9syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ≤ 𝐴)
11 simpl3 1194 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < 𝐵)
124, 5, 6, 10, 11xrlelttrd 13059 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐵)
13 xrltne 13062 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → 𝐵 ≠ -∞)
144, 6, 12, 13syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≠ -∞)
15 xaddpnf1 13125 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
166, 14, 15syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
1716eleq1d 2816 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((𝐵 +𝑒 +∞) ∈ ℝ ↔ +∞ ∈ ℝ))
188, 17mtbiri 327 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (𝐵 +𝑒 +∞) ∈ ℝ)
19 ngtmnft 13065 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
205, 19syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
21 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ)
22 xnegeq 13106 . . . . . . . . . . . . . . . . 17 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
23 xnegmnf 13109 . . . . . . . . . . . . . . . . 17 -𝑒-∞ = +∞
2422, 23eqtrdi 2782 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2524oveq2d 7362 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 +∞))
2625eleq1d 2816 . . . . . . . . . . . . . 14 (𝐴 = -∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (𝐵 +𝑒 +∞) ∈ ℝ))
2721, 26syl5ibcom 245 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ → (𝐵 +𝑒 +∞) ∈ ℝ))
2820, 27sylbird 260 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ -∞ < 𝐴 → (𝐵 +𝑒 +∞) ∈ ℝ))
2918, 28mt3d 148 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐴)
30 xrre2 13069 . . . . . . . . . . 11 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
314, 5, 6, 29, 11, 30syl32anc 1380 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
32 pnfxr 11166 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → +∞ ∈ ℝ*)
345xnegcld 13199 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ∈ ℝ*)
35 xnegpnf 13108 . . . . . . . . . . . . . . . . 17 -𝑒+∞ = -∞
36 pnfge 13029 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
376, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≤ +∞)
385, 6, 33, 11, 37xrltletrd 13060 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < +∞)
39 xltnegi 13115 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → -𝑒+∞ < -𝑒𝐴)
405, 33, 38, 39syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒+∞ < -𝑒𝐴)
4135, 40eqbrtrrid 5125 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < -𝑒𝐴)
42 xrltne 13062 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ* ∧ -∞ < -𝑒𝐴) → -𝑒𝐴 ≠ -∞)
434, 34, 41, 42syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ≠ -∞)
44 xaddpnf2 13126 . . . . . . . . . . . . . . 15 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4534, 43, 44syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4645eleq1d 2816 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((+∞ +𝑒 -𝑒𝐴) ∈ ℝ ↔ +∞ ∈ ℝ))
478, 46mtbiri 327 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ)
48 nltpnft 13063 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
496, 48syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
50 oveq1 7353 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -𝑒𝐴))
5150eleq1d 2816 . . . . . . . . . . . . . 14 (𝐵 = +∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5221, 51syl5ibcom 245 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5349, 52sylbird 260 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ 𝐵 < +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5447, 53mt3d 148 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 < +∞)
55 xrre2 13069 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
565, 6, 33, 11, 54, 55syl32anc 1380 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5731, 56jca 511 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5857ex 412 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
59583expia 1121 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
60593adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
612, 60sylbird 260 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵𝐴 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
621, 61biimtrid 242 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
63623exp 1119 . . 3 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
6463com34 91 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
65643imp1 1348 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  -𝑒cxne 13008   +𝑒 cxad 13009  distcds 17170  *𝑠cxrs 17404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-xneg 13011  df-xadd 13012
This theorem is referenced by:  xrsdsreclb  21350
  Copyright terms: Public domain W3C validator