| Metamath
Proof Explorer Theorem List (p. 132 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | xnegmnf 13101 | Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ -𝑒-∞ = +∞ | ||
| Theorem | rexneg 13102 | Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | ||
| Theorem | xneg0 13103 | The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ -𝑒0 = 0 | ||
| Theorem | xnegcl 13104 | Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | ||
| Theorem | xnegneg 13105 | Extended real version of negneg 11403. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | ||
| Theorem | xneg11 13106 | Extended real version of neg11 11404. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | xltnegi 13107 | Forward direction of xltneg 13108. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴) | ||
| Theorem | xltneg 13108 | Extended real version of ltneg 11609. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴)) | ||
| Theorem | xleneg 13109 | Extended real version of leneg 11612. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) | ||
| Theorem | xlt0neg1 13110 | Extended real version of lt0neg1 11615. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | ||
| Theorem | xlt0neg2 13111 | Extended real version of lt0neg2 11616. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0)) | ||
| Theorem | xle0neg1 13112 | Extended real version of le0neg1 11617. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴)) | ||
| Theorem | xle0neg2 13113 | Extended real version of le0neg2 11618. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ -𝑒𝐴 ≤ 0)) | ||
| Theorem | xaddval 13114 | Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))) | ||
| Theorem | xaddf 13115 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | ||
| Theorem | xmulval 13116 | Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | ||
| Theorem | xaddpnf1 13117 | Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | ||
| Theorem | xaddpnf2 13118 | Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) | ||
| Theorem | xaddmnf1 13119 | Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | ||
| Theorem | xaddmnf2 13120 | Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) | ||
| Theorem | pnfaddmnf 13121 | Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (+∞ +𝑒 -∞) = 0 | ||
| Theorem | mnfaddpnf 13122 | Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (-∞ +𝑒 +∞) = 0 | ||
| Theorem | rexadd 13123 | The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | rexsub 13124 | Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | rexaddd 13125 | The extended real addition operation when both arguments are real. Deduction version of rexadd 13123. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | xnn0xaddcl 13126 | The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*) | ||
| Theorem | xaddnemnf 13127 | Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) | ||
| Theorem | xaddnepnf 13128 | Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | ||
| Theorem | xnegid 13129 | Extended real version of negid 11400. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) | ||
| Theorem | xaddcl 13130 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | ||
| Theorem | xaddcom 13131 | The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴)) | ||
| Theorem | xaddrid 13132 | Extended real version of addrid 11285. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | ||
| Theorem | xaddlid 13133 | Extended real version of addlid 11288. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) | ||
| Theorem | xaddridd 13134 | 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) | ||
| Theorem | xnn0lem1lt 13135 | Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
| Theorem | xnn0lenn0nn0 13136 | An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
| ⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) | ||
| Theorem | xnn0le2is012 13137 | An extended nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 24-Nov-2021.) |
| ⊢ ((𝑁 ∈ ℕ0* ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | ||
| Theorem | xnn0xadd0 13138 | The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.) |
| ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | ||
| Theorem | xnegdi 13139 | Extended real version of negdi 11410. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵)) | ||
| Theorem | xaddass 13140 | Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐵, 𝐶, i.e. ¬ {+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐵, 𝐶, and xaddass2 13141, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xaddass2 13141 | Associativity of extended real addition. See xaddass 13140 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xpncan 13142 | Extended real version of pncan 11358. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴) | ||
| Theorem | xnpcan 13143 | Extended real version of npcan 11361. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) | ||
| Theorem | xleadd1a 13144 | Extended real version of leadd1 11577; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≤ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | ||
| Theorem | xleadd2a 13145 | Commuted form of xleadd1a 13144. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) | ||
| Theorem | xleadd1 13146 | Weakened version of xleadd1a 13144 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) | ||
| Theorem | xltadd1 13147 | Extended real version of ltadd1 11576. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) | ||
| Theorem | xltadd2 13148 | Extended real version of ltadd2 11209. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 +𝑒 𝐴) < (𝐶 +𝑒 𝐵))) | ||
| Theorem | xaddge0 13149 | The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵)) | ||
| Theorem | xle2add 13150 | Extended real version of le2add 11591. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | ||
| Theorem | xlt2add 13151 | Extended real version of lt2add 11594. Note that ltleadd 11592, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))) | ||
| Theorem | xsubge0 13152 | Extended real version of subge0 11622. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | xposdif 13153 | Extended real version of posdif 11602. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) | ||
| Theorem | xlesubadd 13154 | Under certain conditions, the conclusion of lesubadd 11581 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵))) | ||
| Theorem | xmullem 13155 | Lemma for rexmul 13162. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ) | ||
| Theorem | xmullem2 13156 | Lemma for xmulneg1 13160. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | ||
| Theorem | xmulcom 13157 | Extended real multiplication is commutative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = (𝐵 ·e 𝐴)) | ||
| Theorem | xmul01 13158 | Extended real version of mul01 11284. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) | ||
| Theorem | xmul02 13159 | Extended real version of mul02 11283. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 ·e 𝐴) = 0) | ||
| Theorem | xmulneg1 13160 | Extended real version of mulneg1 11545. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
| Theorem | xmulneg2 13161 | Extended real version of mulneg2 11546. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e -𝑒𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
| Theorem | rexmul 13162 | The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | xmulf 13163 | The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ·e :(ℝ* × ℝ*)⟶ℝ* | ||
| Theorem | xmulcl 13164 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
| Theorem | xmulpnf1 13165 | Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | ||
| Theorem | xmulpnf2 13166 | Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = +∞) | ||
| Theorem | xmulmnf1 13167 | Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) | ||
| Theorem | xmulmnf2 13168 | Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (-∞ ·e 𝐴) = -∞) | ||
| Theorem | xmulpnf1n 13169 | Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) | ||
| Theorem | xmulrid 13170 | Extended real version of mulrid 11102. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) | ||
| Theorem | xmullid 13171 | Extended real version of mullid 11103. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴) | ||
| Theorem | xmulm1 13172 | Extended real version of mulm1 11550. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (-1 ·e 𝐴) = -𝑒𝐴) | ||
| Theorem | xmulasslem2 13173 | Lemma for xmulass 13178. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) | ||
| Theorem | xmulgt0 13174 | Extended real version of mulgt0 11182. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵)) | ||
| Theorem | xmulge0 13175 | Extended real version of mulge0 11627. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵)) | ||
| Theorem | xmulasslem 13176* | Lemma for xmulass 13178. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝑥 = 𝐷 → (𝜓 ↔ 𝑋 = 𝑌)) & ⊢ (𝑥 = -𝑒𝐷 → (𝜓 ↔ 𝐸 = 𝐹)) & ⊢ (𝜑 → 𝑋 ∈ ℝ*) & ⊢ (𝜑 → 𝑌 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓) & ⊢ (𝜑 → (𝑥 = 0 → 𝜓)) & ⊢ (𝜑 → 𝐸 = -𝑒𝑋) & ⊢ (𝜑 → 𝐹 = -𝑒𝑌) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | xmulasslem3 13177 | Lemma for xmulass 13178. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
| Theorem | xmulass 13178 | Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass 13140 which has to avoid the "undefined" combinations +∞ +𝑒 -∞ and -∞ +𝑒 +∞. The equivalent "undefined" expression here would be 0 ·e +∞, but since this is defined to equal 0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
| Theorem | xlemul1a 13179 | Extended real version of lemul1a 11967. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) | ||
| Theorem | xlemul2a 13180 | Extended real version of lemul2a 11968. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵)) | ||
| Theorem | xlemul1 13181 | Extended real version of lemul1 11965. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))) | ||
| Theorem | xlemul2 13182 | Extended real version of lemul2 11966. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵))) | ||
| Theorem | xltmul1 13183 | Extended real version of ltmul1 11963. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶))) | ||
| Theorem | xltmul2 13184 | Extended real version of ltmul2 11964. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐶 ·e 𝐴) < (𝐶 ·e 𝐵))) | ||
| Theorem | xadddilem 13185 | Lemma for xadddi 13186. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddi 13186 | Distributive property for extended real addition and multiplication. Like xaddass 13140, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddir 13187 | Commuted version of xadddi 13186. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | xadddi2 13188 | The assumption that the multiplier be real in xadddi 13186 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
| Theorem | xadddi2r 13189 | Commuted version of xadddi2 13188. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | x2times 13190 | Extended real version of 2times 12248. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) | ||
| Theorem | xnegcld 13191 | Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -𝑒𝐴 ∈ ℝ*) | ||
| Theorem | xaddcld 13192 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) | ||
| Theorem | xmulcld 13193 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
| Theorem | xadd4d 13194 | Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 11334. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
| ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) & ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) & ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) & ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
| Theorem | xnn0add4d 13195 | Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 13194. (Contributed by AV, 12-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0*) & ⊢ (𝜑 → 𝐵 ∈ ℕ0*) & ⊢ (𝜑 → 𝐶 ∈ ℕ0*) & ⊢ (𝜑 → 𝐷 ∈ ℕ0*) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
| Theorem | xrsupexmnf 13196* | Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
| ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) | ||
| Theorem | xrinfmexpnf 13197* | Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))) | ||
| Theorem | xrsupsslem 13198* | Lemma for xrsupss 13200. (Contributed by NM, 25-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | xrinfmsslem 13199* | Lemma for xrinfmss 13201. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | xrsupss 13200* | Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.) |
| ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |