| Metamath
Proof Explorer Theorem List (p. 132 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ltdivmul2d 13101 | 'Less than' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 · 𝐶))) | ||
| Theorem | ledivmuld 13102 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐶 · 𝐵))) | ||
| Theorem | ledivmul2d 13103 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 · 𝐶))) | ||
| Theorem | ltmul1dd 13104 | The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
| Theorem | ltmul2dd 13105 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵)) | ||
| Theorem | ltdiv1dd 13106 | Division of both sides of 'less than' by a positive number. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) < (𝐵 / 𝐶)) | ||
| Theorem | lediv1dd 13107 | Division of both sides of a less than or equal to relation by a positive number. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)) | ||
| Theorem | lediv12ad 13108 | Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | ||
| Theorem | mul2lt0rlt0 13109 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) | ||
| Theorem | mul2lt0rgt0 13110 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) | ||
| Theorem | mul2lt0llt0 13111 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 𝐴 < 0) → 0 < 𝐵) | ||
| Theorem | mul2lt0lgt0 13112 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 < 0) | ||
| Theorem | mul2lt0bi 13113 | If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ((𝐴 < 0 ∧ 0 < 𝐵) ∨ (0 < 𝐴 ∧ 𝐵 < 0)))) | ||
| Theorem | prodge0rd 13114 | Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Revised by AV, 9-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐵) | ||
| Theorem | prodge0ld 13115 | Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by AV, 9-Jul-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
| Theorem | ltdiv23d 13116 | Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 / 𝐵) < 𝐶) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) < 𝐵) | ||
| Theorem | lediv23d 13117 | Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐴 / 𝐵) ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) ≤ 𝐵) | ||
| Theorem | lt2mul2divd 13118 | The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) | ||
| Theorem | nnledivrp 13119 | Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | ||
| Theorem | nn0ledivnn 13120 | Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) | ||
| Theorem | addlelt 13121 | If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) | ||
| Theorem | ge2halflem1 13122 | Half of an integer greater than 1 is less than or equal to the integer minus 1. (Contributed by AV, 1-Sep-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ≤ (𝑁 − 1)) | ||
| Syntax | cxne 13123 | Extend class notation to include the negative of an extended real. |
| class -𝑒𝐴 | ||
| Syntax | cxad 13124 | Extend class notation to include addition of extended reals. |
| class +𝑒 | ||
| Syntax | cxmu 13125 | Extend class notation to include multiplication of extended reals. |
| class ·e | ||
| Definition | df-xneg 13126 | Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.) |
| ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | ||
| Definition | df-xadd 13127* | Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))))) | ||
| Definition | df-xmul 13128* | Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) | ||
| Theorem | ltxr 13129 | The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 <ℝ 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))) | ||
| Theorem | elxr 13130 | Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | ||
| Theorem | xrnemnf 13131 | An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | ||
| Theorem | xrnepnf 13132 | An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | ||
| Theorem | xrltnr 13133 | The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | ||
| Theorem | ltpnf 13134 | Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | ||
| Theorem | ltpnfd 13135 | Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 < +∞) | ||
| Theorem | 0ltpnf 13136 | Zero is less than plus infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 < +∞ | ||
| Theorem | mnflt 13137 | Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | ||
| Theorem | mnfltd 13138 | Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → -∞ < 𝐴) | ||
| Theorem | mnflt0 13139 | Minus infinity is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -∞ < 0 | ||
| Theorem | mnfltpnf 13140 | Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| ⊢ -∞ < +∞ | ||
| Theorem | mnfltxr 13141 | Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) | ||
| Theorem | pnfnlt 13142 | No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | ||
| Theorem | nltmnf 13143 | No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | ||
| Theorem | pnfge 13144 | Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | ||
| Theorem | pnfged 13145 | Plus infinity is an upper bound for extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 ≤ +∞) | ||
| Theorem | xnn0n0n1ge2b 13146 | An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.) |
| ⊢ (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
| Theorem | 0lepnf 13147 | 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ≤ +∞ | ||
| Theorem | xnn0ge0 13148 | An extended nonnegative integer is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Revised by AV, 10-Dec-2020.) |
| ⊢ (𝑁 ∈ ℕ0* → 0 ≤ 𝑁) | ||
| Theorem | mnfle 13149 | Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | ||
| Theorem | mnfled 13150 | Minus infinity is less than or equal to any extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -∞ ≤ 𝐴) | ||
| Theorem | xrltnsym 13151 | Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | ||
| Theorem | xrltnsym2 13152 | 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) | ||
| Theorem | xrlttri 13153 | Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 11201 or axlttri 11304. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | xrlttr 13154 | Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrltso 13155 | 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| ⊢ < Or ℝ* | ||
| Theorem | xrlttri2 13156 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | xrlttri3 13157 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
| Theorem | xrleloe 13158 | 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | xrleltne 13159 | 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
| Theorem | xrltlen 13160 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | dfle2 13161 | Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) | ||
| Theorem | dflt2 13162 | Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ < = ( ≤ ∖ I ) | ||
| Theorem | xrltle 13163 | 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | ||
| Theorem | xrltled 13164 | 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13163. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | xrleid 13165 | 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
| ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | ||
| Theorem | xrleidd 13166 | 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13165. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐴) | ||
| Theorem | xrletri 13167 | Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | xrletri3 13168 | Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
| Theorem | xrletrid 13169 | Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | xrlelttr 13170 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrltletr 13171 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrletr 13172 | Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
| Theorem | xrlttrd 13173 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrlelttrd 13174 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrltletrd 13175 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrletrd 13176 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
| Theorem | xrltne 13177 | 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | ||
| Theorem | nltpnft 13178 | An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | ||
| Theorem | xgepnf 13179 | An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ 𝐴 = +∞)) | ||
| Theorem | ngtmnft 13180 | An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | ||
| Theorem | xlemnf 13181 | An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞)) | ||
| Theorem | xrrebnd 13182 | An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | ||
| Theorem | xrre 13183 | A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
| Theorem | xrre2 13184 | An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | ||
| Theorem | xrre3 13185 | A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) | ||
| Theorem | ge0gtmnf 13186 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | ||
| Theorem | ge0nemnf 13187 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | ||
| Theorem | xrrege0 13188 | A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
| Theorem | xrmax1 13189 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | xrmax2 13190 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | xrmin1 13191 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
| Theorem | xrmin2 13192 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
| Theorem | xrmaxeq 13193 | The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐴) | ||
| Theorem | xrmineq 13194 | The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) | ||
| Theorem | xrmaxlt 13195 | Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
| Theorem | xrltmin 13196 | Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
| Theorem | xrmaxle 13197 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
| Theorem | xrlemin 13198 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
| Theorem | max1 13199 | A number is less than or equal to the maximum of it and another. See also max1ALT 13200. (Contributed by NM, 3-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | max1ALT 13200 | A number is less than or equal to the maximum of it and another. This version of max1 13199 omits the 𝐵 ∈ ℝ antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 13199 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |