Home Metamath Proof ExplorerTheorem List (p. 132 of 437) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28347) Hilbert Space Explorer (28348-29872) Users' Mathboxes (29873-43650)

Theorem List for Metamath Proof Explorer - 13101-13200   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremaxdc4uzlem 13101* Lemma for axdc4uz 13102. (Contributed by Mario Carneiro, 8-Jan-2014.) (Revised by Mario Carneiro, 26-Dec-2014.)
𝑀 ∈ ℤ    &   𝑍 = (ℤ𝑀)    &   𝐴 ∈ V    &   𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)    &   𝐻 = (𝑛 ∈ ω, 𝑥𝐴 ↦ ((𝐺𝑛)𝐹𝑥))       ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))

Theoremaxdc4uz 13102* A version of axdc4 9613 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.)
𝑀 ∈ ℤ    &   𝑍 = (ℤ𝑀)       ((𝐴𝑉𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))

Theoremssnn0fi 13103* A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.)
(𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))

Theoremrabssnn0fi 13104* A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.)
({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))

5.6.4  Strong induction over upper sets of integers

Theoremuzsinds 13105* Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = 𝑁 → (𝜑𝜒))    &   (𝑥 ∈ (ℤ𝑀) → (∀𝑦 ∈ (𝑀...(𝑥 − 1))𝜓𝜑))       (𝑁 ∈ (ℤ𝑀) → 𝜒)

Theoremnnsinds 13106* Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = 𝑁 → (𝜑𝜒))    &   (𝑥 ∈ ℕ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜓𝜑))       (𝑁 ∈ ℕ → 𝜒)

Theoremnn0sinds 13107* Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = 𝑁 → (𝜑𝜒))    &   (𝑥 ∈ ℕ0 → (∀𝑦 ∈ (0...(𝑥 − 1))𝜓𝜑))       (𝑁 ∈ ℕ0𝜒)

5.6.5  Finitely supported functions over the nonnegative integers

Theoremfsuppmapnn0fiublem 13108* Lemma for fsuppmapnn0fiub 13109 and fsuppmapnn0fiubex 13110. (Contributed by AV, 2-Oct-2019.)
𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)    &   𝑆 = sup(𝑈, ℝ, < )       ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))

Theoremfsuppmapnn0fiub 13109* If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.)
𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)    &   𝑆 = sup(𝑈, ℝ, < )       ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))

Theoremfsuppmapnn0fiubex 13110* If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.)
((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))

Theoremfsuppmapnn0fiub0 13111* If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))

Theoremsuppssfz 13112* Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.)
(𝜑𝑍𝑉)    &   (𝜑𝐹 ∈ (𝐵𝑚0))    &   (𝜑𝑆 ∈ ℕ0)    &   (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))       (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))

Theoremfsuppmapnn0ub 13113* If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.)
((𝐹 ∈ (𝑅𝑚0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))

Theoremfsuppmapnn0fz 13114* If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019.) (Proof shortened by AV, 6-Oct-2019.)
((𝐹 ∈ (𝑅𝑚0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚)))

Theoremmptnn0fsupp 13115* A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.)
(𝜑0𝑉)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)    &   (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))       (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )

Theoremmptnn0fsuppd 13116* A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019.) (Revised by AV, 23-Dec-2019.)
(𝜑0𝑉)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)    &   (𝑘 = 𝑥𝐶 = 𝐷)    &   (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝐷 = 0 ))       (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )

Theoremmptnn0fsuppr 13117* A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
(𝜑0𝑉)    &   ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)    &   (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )       (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))

Theoremf13idfv 13118 A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
𝐴 = (0...2)       (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹‘0) ≠ (𝐹‘1) ∧ (𝐹‘0) ≠ (𝐹‘2) ∧ (𝐹‘1) ≠ (𝐹‘2))))

5.6.6  The infinite sequence builder "seq" - extension

Syntaxcseq 13119 Extend class notation with recursive sequence builder.
class seq𝑀( + , 𝐹)

Definitiondf-seq 13120* Define a general-purpose operation that builds a recursive sequence (i.e., a function on an upper integer set such as or 0) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seq1 13132 and seqp1 13134. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹)‘1) = 1, (seq1( + , 𝐹)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹) transforms a sequence 𝐹 into an infinite series. seq𝑀( + , 𝐹) ⇝ 2 means "the sum of F(n) from n = M to infinity is 2." Since limits are unique (climuni 14691), by climdm 14693 the "sum of F(n) from n = 1 to infinity" can be expressed as ( ⇝ ‘seq1( + , 𝐹)) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the rec function generates as its values a set of ordered pairs starting at 𝑀, (𝐹𝑀)⟩, with the first member of each pair incremented by one in each successive value. So, the range of rec is exactly the sequence we want, and we just extract the range (restricted to omega) and throw away the domain.

This definition has its roots in a series of theorems from om2uz0i 13065 through om2uzf1oi 13071, originally proved by Raph Levien for use with df-exp 13179 and later generalized for arbitrary recursive sequences. Definition df-sum 14825 extracts the summation values from partial (finite) and complete (infinite) series. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 4-Sep-2013.)

seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)

Theoremseqex 13121 Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
seq𝑀( + , 𝐹) ∈ V

Theoremseqeq1 13122 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
(𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))

Theoremseqeq2 13123 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))

Theoremseqeq3 13124 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
(𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))

Theoremseqeq1d 13125 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹))

Theoremseqeq2d 13126 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → seq𝑀(𝐴, 𝐹) = seq𝑀(𝐵, 𝐹))

Theoremseqeq3d 13127 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
(𝜑𝐴 = 𝐵)       (𝜑 → seq𝑀( + , 𝐴) = seq𝑀( + , 𝐵))

Theoremseqeq123d 13128 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
(𝜑𝑀 = 𝑁)    &   (𝜑+ = 𝑄)    &   (𝜑𝐹 = 𝐺)       (𝜑 → seq𝑀( + , 𝐹) = seq𝑁(𝑄, 𝐺))

Theoremnfseq 13129 Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝑀    &   𝑥 +    &   𝑥𝐹       𝑥seq𝑀( + , 𝐹)

Theoremseqval 13130* Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013.)
𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) ↾ ω)       seq𝑀( + , 𝐹) = ran 𝑅

Theoremseqfn 13131 The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
(𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))

Theoremseq1 13132 Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
(𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))

Theoremseq1i 13133 Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 30-Apr-2014.)
𝑀 ∈ ℤ    &   (𝜑 → (𝐹𝑀) = 𝐴)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = 𝐴)

Theoremseqp1 13134 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
(𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))

Theoremseqp1i 13135 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 30-Apr-2014.)
𝑍 = (ℤ𝑀)    &   𝑁𝑍    &   𝐾 = (𝑁 + 1)    &   (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴)    &   (𝜑 → (𝐹𝐾) = 𝐵)       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵))

Theoremseqm1 13136 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))

Theoremseqcl2 13137* Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑 → (𝐹𝑀) ∈ 𝐶)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝐷)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)

Theoremseqf2 13138* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑 → (𝐹𝑀) ∈ 𝐶)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)       (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)

Theoremseqcl 13139* Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)

Theoremseqf 13140* Range of the recursive sequence builder (special case of seqf2 13138). (Contributed by Mario Carneiro, 24-Jun-2013.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)

Theoremseqfveq2 13141* Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))

Theoremseqfeq2 13142* Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))    &   ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺))

Theoremseqfveq 13143* Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))

Theoremseqfeq 13144* Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))

Theoremseqshft2 13145* Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))

Theoremseqres 13146 Restricting its characteristic function to (ℤ𝑀) does not affect the seq function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.)
(𝑀 ∈ ℤ → seq𝑀( + , (𝐹 ↾ (ℤ𝑀))) = seq𝑀( + , 𝐹))

Theoremserf 13147* An infinite series of complex terms is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)

Theoremserfre 13148* An infinite series of real numbers is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)       (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)

Theoremmonoord 13149* Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))       (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))

Theoremmonoord2 13150* Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))       (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))

Theoremsermono 13151* The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-Jun-2013.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ ℝ)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))

Theoremseqsplit 13152* Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑀 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))

Theoremseq1p 13153* Removing the first term from a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((𝐹𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))

Theoremseqcaopr3 13154* Lemma for seqcaopr2 13155. (Contributed by Mario Carneiro, 25-Apr-2016.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))    &   ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))

Theoremseqcaopr2 13155* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))

Theoremseqcaopr 13156* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))

Theoremseqf1olem2a 13157* Lemma for seqf1o 13160. (Contributed by Mario Carneiro, 24-Apr-2016.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐶𝑆)    &   (𝜑𝐺:𝐴𝐶)    &   (𝜑𝐾𝐴)    &   (𝜑 → (𝑀...𝑁) ⊆ 𝐴)       (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))

Theoremseqf1olem1 13158* Lemma for seqf1o 13160. (Contributed by Mario Carneiro, 26-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐶𝑆)    &   (𝜑𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))    &   (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝐶)    &   𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))))    &   𝐾 = (𝐹‘(𝑁 + 1))       (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))

Theoremseqf1olem2 13159* Lemma for seqf1o 13160. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐶𝑆)    &   (𝜑𝐹:(𝑀...(𝑁 + 1))–1-1-onto→(𝑀...(𝑁 + 1)))    &   (𝜑𝐺:(𝑀...(𝑁 + 1))⟶𝐶)    &   𝐽 = (𝑘 ∈ (𝑀...𝑁) ↦ (𝐹‘if(𝑘 < 𝐾, 𝑘, (𝑘 + 1))))    &   𝐾 = (𝐹‘(𝑁 + 1))    &   (𝜑 → ∀𝑔𝑓((𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ 𝑔:(𝑀...𝑁)⟶𝐶) → (seq𝑀( + , (𝑔𝑓))‘𝑁) = (seq𝑀( + , 𝑔)‘𝑁)))       (𝜑 → (seq𝑀( + , (𝐺𝐹))‘(𝑁 + 1)) = (seq𝑀( + , 𝐺)‘(𝑁 + 1)))

Theoremseqf1o 13160* Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐶𝑆)    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝐶)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))

Theoremseradd 13161* The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 26-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))

Theoremsersub 13162* The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) − (seq𝑀( + , 𝐺)‘𝑁)))

Theoremseqid3 13163* A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.)
(𝜑 → (𝑍 + 𝑍) = 𝑍)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)

Theoremseqid 13164* Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)    &   (𝜑𝑍𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → (𝐹𝑁) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))

Theoremseqid2 13165* The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)    &   (𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))

Theoremseqhomo 13166* Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))       (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))

Theoremseqz 13167* If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)    &   ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝑁𝑉)    &   (𝜑 → (𝐹𝐾) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)

Theoremseqfeq4 13168* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))

Theoremseqfeq3 13169* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))       (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))

Theoremseqdistr 13170* The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))

Theoremser0 13171 The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0)

Theoremser0f 13172 A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))

Theoremserge0 13173* A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))

Theoremserle 13174* Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))

Theoremser1const 13175 Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))

Theoremseqof 13176* Distribute function operation through a sequence. Note that 𝐺(𝑧) is an implicit function on 𝑧. (Contributed by Mario Carneiro, 3-Mar-2015.)
(𝜑𝐴𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))       (𝜑 → (seq𝑀( ∘𝑓 + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))

Theoremseqof2 13177* Distribute function operation through a sequence. Maps-to notation version of seqof 13176. (Contributed by Mario Carneiro, 7-Jul-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → (𝑀...𝑁) ⊆ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)       (𝜑 → (seq𝑀( ∘𝑓 + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))

5.6.7  Integer powers

Syntaxcexp 13178 Extend class notation to include exponentiation of a complex number to an integer power.
class

Definitiondf-exp 13179* Define exponentiation to nonnegative integer powers. For example, (5↑2) = 25 (ex-exp 27882). Terminology: In general, "exponentiation" is the operation of raising a "base" 𝑥 to the power of the "exponent" 𝑦, resulting in the "power" (𝑥𝑦), also called "x to the power of y". In this case, "integer exponentiation" is the operation of raising a complex "base" 𝑥 to the power of an integer 𝑦, resulting in the "integer power" (𝑥𝑦).

This definition is not meant to be used directly; instead, exp0 13182 and expp1 13185 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (0exp0e1 13183).

4-Jun-2014: The definition was extended to include negative integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 27882). The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems.

For a definition of exponentiation including complex exponents see df-cxp 24741 (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz 24850. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.)

↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))

Theoremexpval 13180 Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Theoremexpnnval 13181 Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))

Theoremexp0 13182 Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1, following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
(𝐴 ∈ ℂ → (𝐴↑0) = 1)

Theorem0exp0e1 13183 0↑0 = 1. This is our convention. It follows the convention used by Gleason; see Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by David A. Wheeler, 8-Dec-2018.)
(0↑0) = 1

Theoremexp1 13184 Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
(𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)

Theoremexpp1 13185 Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Theoremexpneg 13186 Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Theoremexpneg2 13187 Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))

Theoremexpn1 13188 A number to the negative one power is the reciprocal. (Contributed by Mario Carneiro, 4-Jun-2014.)
(𝐴 ∈ ℂ → (𝐴↑-1) = (1 / 𝐴))

Theoremexpcllem 13189* Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
𝐹 ⊆ ℂ    &   ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)    &   1 ∈ 𝐹       ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)

Theoremexpcl2lem 13190* Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
𝐹 ⊆ ℂ    &   ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)    &   1 ∈ 𝐹    &   ((𝑥𝐹𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹)       ((𝐴𝐹𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)

Theoremnnexpcl 13191 Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)

Theoremnn0expcl 13192 Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.)
((𝐴 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ0)

Theoremzexpcl 13193 Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)

Theoremqexpcl 13194 Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℚ)

Theoremreexpcl 13195 Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℝ)

Theoremexpcl 13196 Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)

Theoremrpexpcl 13197 Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)

Theoremreexpclz 13198 Closure of exponentiation of reals. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ)

Theoremqexpclz 13199 Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℚ)

Theoremm1expcl2 13200 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43650
 Copyright terms: Public domain < Previous  Next >