| Metamath
Proof Explorer Theorem List (p. 132 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | xrltso 13101 | 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| ⊢ < Or ℝ* | ||
| Theorem | xrlttri2 13102 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | xrlttri3 13103 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
| Theorem | xrleloe 13104 | 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | xrleltne 13105 | 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
| Theorem | xrltlen 13106 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | dfle2 13107 | Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) | ||
| Theorem | dflt2 13108 | Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ < = ( ≤ ∖ I ) | ||
| Theorem | xrltle 13109 | 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | ||
| Theorem | xrltled 13110 | 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 13109. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | xrleid 13111 | 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
| ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | ||
| Theorem | xrleidd 13112 | 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 13111. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐴) | ||
| Theorem | xrletri 13113 | Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | xrletri3 13114 | Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
| Theorem | xrletrid 13115 | Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | xrlelttr 13116 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrltletr 13117 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | ||
| Theorem | xrletr 13118 | Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
| Theorem | xrlttrd 13119 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrlelttrd 13120 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrltletrd 13121 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | xrletrd 13122 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
| Theorem | xrltne 13123 | 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | ||
| Theorem | nltpnft 13124 | An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | ||
| Theorem | xgepnf 13125 | An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ 𝐴 = +∞)) | ||
| Theorem | ngtmnft 13126 | An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | ||
| Theorem | xlemnf 13127 | An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞)) | ||
| Theorem | xrrebnd 13128 | An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | ||
| Theorem | xrre 13129 | A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
| Theorem | xrre2 13130 | An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | ||
| Theorem | xrre3 13131 | A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) | ||
| Theorem | ge0gtmnf 13132 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | ||
| Theorem | ge0nemnf 13133 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | ||
| Theorem | xrrege0 13134 | A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
| Theorem | xrmax1 13135 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | xrmax2 13136 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | xrmin1 13137 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
| Theorem | xrmin2 13138 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
| Theorem | xrmaxeq 13139 | The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐴) | ||
| Theorem | xrmineq 13140 | The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) | ||
| Theorem | xrmaxlt 13141 | Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
| Theorem | xrltmin 13142 | Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
| Theorem | xrmaxle 13143 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
| Theorem | xrlemin 13144 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
| Theorem | max1 13145 | A number is less than or equal to the maximum of it and another. See also max1ALT 13146. (Contributed by NM, 3-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | max1ALT 13146 | A number is less than or equal to the maximum of it and another. This version of max1 13145 omits the 𝐵 ∈ ℝ antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 13145 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | max2 13147 | A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | 2resupmax 13148 | The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
| Theorem | min1 13149 | The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
| Theorem | min2 13150 | The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
| Theorem | maxle 13151 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by NM, 29-Sep-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
| Theorem | lemin 13152 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
| Theorem | maxlt 13153 | Two ways of saying the maximum of two numbers is less than a third. (Contributed by NM, 3-Aug-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
| Theorem | ltmin 13154 | Two ways of saying a number is less than the minimum of two others. (Contributed by NM, 1-Sep-2006.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
| Theorem | lemaxle 13155 | A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.) |
| ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) | ||
| Theorem | max0sub 13156 | Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) | ||
| Theorem | ifle 13157 | An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) | ||
| Theorem | z2ge 13158* | There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) | ||
| Theorem | qbtwnre 13159* | The rational numbers are dense in ℝ: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
| Theorem | qbtwnxr 13160* | The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
| Theorem | qsqueeze 13161* | If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) | ||
| Theorem | qextltlem 13162* | Lemma for qextlt 13163 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | ||
| Theorem | qextlt 13163* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) | ||
| Theorem | qextle 13164* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) | ||
| Theorem | xralrple 13165* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
| Theorem | alrple 13166* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
| Theorem | xnegeq 13167 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | ||
| Theorem | xnegex 13168 | A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ -𝑒𝐴 ∈ V | ||
| Theorem | xnegpnf 13169 | Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| ⊢ -𝑒+∞ = -∞ | ||
| Theorem | xnegmnf 13170 | Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ -𝑒-∞ = +∞ | ||
| Theorem | rexneg 13171 | Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | ||
| Theorem | xneg0 13172 | The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ -𝑒0 = 0 | ||
| Theorem | xnegcl 13173 | Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | ||
| Theorem | xnegneg 13174 | Extended real version of negneg 11472. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | ||
| Theorem | xneg11 13175 | Extended real version of neg11 11473. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | xltnegi 13176 | Forward direction of xltneg 13177. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴) | ||
| Theorem | xltneg 13177 | Extended real version of ltneg 11678. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴)) | ||
| Theorem | xleneg 13178 | Extended real version of leneg 11681. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) | ||
| Theorem | xlt0neg1 13179 | Extended real version of lt0neg1 11684. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | ||
| Theorem | xlt0neg2 13180 | Extended real version of lt0neg2 11685. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0)) | ||
| Theorem | xle0neg1 13181 | Extended real version of le0neg1 11686. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴)) | ||
| Theorem | xle0neg2 13182 | Extended real version of le0neg2 11687. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ -𝑒𝐴 ≤ 0)) | ||
| Theorem | xaddval 13183 | Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))) | ||
| Theorem | xaddf 13184 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | ||
| Theorem | xmulval 13185 | Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | ||
| Theorem | xaddpnf1 13186 | Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | ||
| Theorem | xaddpnf2 13187 | Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) | ||
| Theorem | xaddmnf1 13188 | Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | ||
| Theorem | xaddmnf2 13189 | Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) | ||
| Theorem | pnfaddmnf 13190 | Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (+∞ +𝑒 -∞) = 0 | ||
| Theorem | mnfaddpnf 13191 | Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (-∞ +𝑒 +∞) = 0 | ||
| Theorem | rexadd 13192 | The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | rexsub 13193 | Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | rexaddd 13194 | The extended real addition operation when both arguments are real. Deduction version of rexadd 13192. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
| Theorem | xnn0xaddcl 13195 | The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.) |
| ⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*) | ||
| Theorem | xaddnemnf 13196 | Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) | ||
| Theorem | xaddnepnf 13197 | Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | ||
| Theorem | xnegid 13198 | Extended real version of negid 11469. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) | ||
| Theorem | xaddcl 13199 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | ||
| Theorem | xaddcom 13200 | The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |