MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddass2 Structured version   Visualization version   GIF version

Theorem xaddass2 12638
Description: Associativity of extended real addition. See xaddass 12637 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1194 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ∈ ℝ*)
2 xnegcl 12601 . . . . . 6 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
31, 2syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ∈ ℝ*)
4 simp1r 1195 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ≠ +∞)
5 pnfxr 10689 . . . . . . . . 9 +∞ ∈ ℝ*
6 xneg11 12603 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
71, 5, 6sylancl 589 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
87necon3bid 3058 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 ≠ -𝑒+∞ ↔ 𝐴 ≠ +∞))
94, 8mpbird 260 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -𝑒+∞)
10 xnegpnf 12597 . . . . . . 7 -𝑒+∞ = -∞
1110a1i 11 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒+∞ = -∞)
129, 11neeqtrd 3083 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -∞)
13 simp2l 1196 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ∈ ℝ*)
14 xnegcl 12601 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
1513, 14syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ∈ ℝ*)
16 simp2r 1197 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ≠ +∞)
17 xneg11 12603 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1813, 5, 17sylancl 589 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1918necon3bid 3058 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 ≠ -𝑒+∞ ↔ 𝐵 ≠ +∞))
2016, 19mpbird 260 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -𝑒+∞)
2120, 11neeqtrd 3083 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -∞)
22 simp3l 1198 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ∈ ℝ*)
23 xnegcl 12601 . . . . . 6 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
2422, 23syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ∈ ℝ*)
25 simp3r 1199 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ≠ +∞)
26 xneg11 12603 . . . . . . . . 9 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2722, 5, 26sylancl 589 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2827necon3bid 3058 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 ≠ -𝑒+∞ ↔ 𝐶 ≠ +∞))
2925, 28mpbird 260 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -𝑒+∞)
3029, 11neeqtrd 3083 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -∞)
31 xaddass 12637 . . . . 5 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (-𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐶 ≠ -∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
323, 12, 15, 21, 24, 30, 31syl222anc 1383 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
33 xnegdi 12636 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
341, 13, 33syl2anc 587 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
3534oveq1d 7161 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶))
36 xnegdi 12636 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3713, 22, 36syl2anc 587 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3837oveq2d 7162 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
3932, 35, 383eqtr4d 2869 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
40 xaddcl 12627 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
411, 13, 40syl2anc 587 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
42 xnegdi 12636 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
4341, 22, 42syl2anc 587 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
44 xaddcl 12627 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
4513, 22, 44syl2anc 587 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
46 xnegdi 12636 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
471, 45, 46syl2anc 587 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
4839, 43, 473eqtr4d 2869 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
49 xaddcl 12627 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
5041, 22, 49syl2anc 587 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
51 xaddcl 12627 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
521, 45, 51syl2anc 587 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
53 xneg11 12603 . . 3 ((((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ* ∧ (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5450, 52, 53syl2anc 587 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5548, 54mpbid 235 1 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  (class class class)co 7146  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668  -𝑒cxne 12499   +𝑒 cxad 12500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-sub 10866  df-neg 10867  df-xneg 12502  df-xadd 12503
This theorem is referenced by:  infleinflem1  41868
  Copyright terms: Public domain W3C validator