MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddass2 Structured version   Visualization version   GIF version

Theorem xaddass2 12642
Description: Associativity of extended real addition. See xaddass 12641 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1193 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ∈ ℝ*)
2 xnegcl 12605 . . . . . 6 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
31, 2syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ∈ ℝ*)
4 simp1r 1194 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ≠ +∞)
5 pnfxr 10694 . . . . . . . . 9 +∞ ∈ ℝ*
6 xneg11 12607 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
71, 5, 6sylancl 588 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
87necon3bid 3060 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 ≠ -𝑒+∞ ↔ 𝐴 ≠ +∞))
94, 8mpbird 259 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -𝑒+∞)
10 xnegpnf 12601 . . . . . . 7 -𝑒+∞ = -∞
1110a1i 11 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒+∞ = -∞)
129, 11neeqtrd 3085 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -∞)
13 simp2l 1195 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ∈ ℝ*)
14 xnegcl 12605 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
1513, 14syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ∈ ℝ*)
16 simp2r 1196 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ≠ +∞)
17 xneg11 12607 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1813, 5, 17sylancl 588 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1918necon3bid 3060 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 ≠ -𝑒+∞ ↔ 𝐵 ≠ +∞))
2016, 19mpbird 259 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -𝑒+∞)
2120, 11neeqtrd 3085 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -∞)
22 simp3l 1197 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ∈ ℝ*)
23 xnegcl 12605 . . . . . 6 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
2422, 23syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ∈ ℝ*)
25 simp3r 1198 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ≠ +∞)
26 xneg11 12607 . . . . . . . . 9 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2722, 5, 26sylancl 588 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2827necon3bid 3060 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 ≠ -𝑒+∞ ↔ 𝐶 ≠ +∞))
2925, 28mpbird 259 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -𝑒+∞)
3029, 11neeqtrd 3085 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -∞)
31 xaddass 12641 . . . . 5 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (-𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐶 ≠ -∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
323, 12, 15, 21, 24, 30, 31syl222anc 1382 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
33 xnegdi 12640 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
341, 13, 33syl2anc 586 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
3534oveq1d 7170 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶))
36 xnegdi 12640 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3713, 22, 36syl2anc 586 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3837oveq2d 7171 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
3932, 35, 383eqtr4d 2866 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
40 xaddcl 12631 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
411, 13, 40syl2anc 586 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
42 xnegdi 12640 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
4341, 22, 42syl2anc 586 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
44 xaddcl 12631 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
4513, 22, 44syl2anc 586 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
46 xnegdi 12640 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
471, 45, 46syl2anc 586 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
4839, 43, 473eqtr4d 2866 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
49 xaddcl 12631 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
5041, 22, 49syl2anc 586 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
51 xaddcl 12631 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
521, 45, 51syl2anc 586 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
53 xneg11 12607 . . 3 ((((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ* ∧ (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5450, 52, 53syl2anc 586 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5548, 54mpbid 234 1 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  (class class class)co 7155  +∞cpnf 10671  -∞cmnf 10672  *cxr 10673  -𝑒cxne 12503   +𝑒 cxad 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-sub 10871  df-neg 10872  df-xneg 12506  df-xadd 12507
This theorem is referenced by:  infleinflem1  41636
  Copyright terms: Public domain W3C validator