| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegcl | Structured version Visualization version GIF version | ||
| Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegcl | ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 13015 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | rexneg 13110 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
| 3 | renegcl 11424 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 4 | 2, 3 | eqeltrd 2831 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ) |
| 5 | 4 | rexrd 11162 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ*) |
| 6 | xnegeq 13106 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
| 7 | xnegpnf 13108 | . . . . 5 ⊢ -𝑒+∞ = -∞ | |
| 8 | mnfxr 11169 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 9 | 7, 8 | eqeltri 2827 | . . . 4 ⊢ -𝑒+∞ ∈ ℝ* |
| 10 | 6, 9 | eqeltrdi 2839 | . . 3 ⊢ (𝐴 = +∞ → -𝑒𝐴 ∈ ℝ*) |
| 11 | xnegeq 13106 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
| 12 | xnegmnf 13109 | . . . . 5 ⊢ -𝑒-∞ = +∞ | |
| 13 | pnfxr 11166 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 14 | 12, 13 | eqeltri 2827 | . . . 4 ⊢ -𝑒-∞ ∈ ℝ* |
| 15 | 11, 14 | eqeltrdi 2839 | . . 3 ⊢ (𝐴 = -∞ → -𝑒𝐴 ∈ ℝ*) |
| 16 | 5, 10, 15 | 3jaoi 1430 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒𝐴 ∈ ℝ*) |
| 17 | 1, 16 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ℝcr 11005 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 -cneg 11345 -𝑒cxne 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-sub 11346 df-neg 11347 df-xneg 13011 |
| This theorem is referenced by: xltneg 13116 xleneg 13117 xnegdi 13147 xaddass2 13149 xleadd1 13154 xsubge0 13160 xposdif 13161 xlesubadd 13162 xmulneg1 13168 xmulneg2 13169 xmulpnf1n 13177 xmulasslem 13184 xnegcld 13199 xrsds 21346 xrsxmet 24725 xrhmeo 24871 xaddeq0 32736 xrsinvgval 32989 xrge0npcan 33001 xnegcli 45490 xlenegcon1 45532 xlenegcon2 45533 |
| Copyright terms: Public domain | W3C validator |