![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegcl | Structured version Visualization version GIF version |
Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegcl | ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 13123 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 13217 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | renegcl 11548 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
4 | 2, 3 | eqeltrd 2829 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ) |
5 | 4 | rexrd 11289 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ*) |
6 | xnegeq 13213 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
7 | xnegpnf 13215 | . . . . 5 ⊢ -𝑒+∞ = -∞ | |
8 | mnfxr 11296 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
9 | 7, 8 | eqeltri 2825 | . . . 4 ⊢ -𝑒+∞ ∈ ℝ* |
10 | 6, 9 | eqeltrdi 2837 | . . 3 ⊢ (𝐴 = +∞ → -𝑒𝐴 ∈ ℝ*) |
11 | xnegeq 13213 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
12 | xnegmnf 13216 | . . . . 5 ⊢ -𝑒-∞ = +∞ | |
13 | pnfxr 11293 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
14 | 12, 13 | eqeltri 2825 | . . . 4 ⊢ -𝑒-∞ ∈ ℝ* |
15 | 11, 14 | eqeltrdi 2837 | . . 3 ⊢ (𝐴 = -∞ → -𝑒𝐴 ∈ ℝ*) |
16 | 5, 10, 15 | 3jaoi 1425 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒𝐴 ∈ ℝ*) |
17 | 1, 16 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 = wceq 1534 ∈ wcel 2099 ℝcr 11132 +∞cpnf 11270 -∞cmnf 11271 ℝ*cxr 11272 -cneg 11470 -𝑒cxne 13116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-sub 11471 df-neg 11472 df-xneg 13119 |
This theorem is referenced by: xltneg 13223 xleneg 13224 xnegdi 13254 xaddass2 13256 xleadd1 13261 xsubge0 13267 xposdif 13268 xlesubadd 13269 xmulneg1 13275 xmulneg2 13276 xmulpnf1n 13284 xmulasslem 13291 xnegcld 13306 xrsds 21336 xrsxmet 24719 xrhmeo 24865 xaddeq0 32518 xrsinvgval 32730 xrge0npcan 32745 xnegcli 44817 xlenegcon1 44860 xlenegcon2 44861 |
Copyright terms: Public domain | W3C validator |