Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegcl | Structured version Visualization version GIF version |
Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegcl | ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12852 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 12945 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | renegcl 11284 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
4 | 2, 3 | eqeltrd 2839 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ) |
5 | 4 | rexrd 11025 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ*) |
6 | xnegeq 12941 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
7 | xnegpnf 12943 | . . . . 5 ⊢ -𝑒+∞ = -∞ | |
8 | mnfxr 11032 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
9 | 7, 8 | eqeltri 2835 | . . . 4 ⊢ -𝑒+∞ ∈ ℝ* |
10 | 6, 9 | eqeltrdi 2847 | . . 3 ⊢ (𝐴 = +∞ → -𝑒𝐴 ∈ ℝ*) |
11 | xnegeq 12941 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
12 | xnegmnf 12944 | . . . . 5 ⊢ -𝑒-∞ = +∞ | |
13 | pnfxr 11029 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
14 | 12, 13 | eqeltri 2835 | . . . 4 ⊢ -𝑒-∞ ∈ ℝ* |
15 | 11, 14 | eqeltrdi 2847 | . . 3 ⊢ (𝐴 = -∞ → -𝑒𝐴 ∈ ℝ*) |
16 | 5, 10, 15 | 3jaoi 1426 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒𝐴 ∈ ℝ*) |
17 | 1, 16 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 -cneg 11206 -𝑒cxne 12845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-sub 11207 df-neg 11208 df-xneg 12848 |
This theorem is referenced by: xltneg 12951 xleneg 12952 xnegdi 12982 xaddass2 12984 xleadd1 12989 xsubge0 12995 xposdif 12996 xlesubadd 12997 xmulneg1 13003 xmulneg2 13004 xmulpnf1n 13012 xmulasslem 13019 xnegcld 13034 xrsds 20641 xrsxmet 23972 xrhmeo 24109 xaddeq0 31076 xrsinvgval 31286 xrge0npcan 31303 xnegcli 42984 xlenegcon1 43027 xlenegcon2 43028 |
Copyright terms: Public domain | W3C validator |