MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegneg Structured version   Visualization version   GIF version

Theorem xnegneg 12600
Description: Extended real version of negneg 10928. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegneg (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)

Proof of Theorem xnegneg
StepHypRef Expression
1 elxr 12504 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 rexneg 12597 . . . . 5 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
3 xnegeq 12593 . . . . 5 (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴)
42, 3syl 17 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴)
5 renegcl 10941 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6 rexneg 12597 . . . . 5 (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
75, 6syl 17 . . . 4 (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴)
8 recn 10619 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
98negnegd 10980 . . . 4 (𝐴 ∈ ℝ → --𝐴 = 𝐴)
104, 7, 93eqtrd 2864 . . 3 (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴)
11 xnegmnf 12596 . . . 4 -𝑒-∞ = +∞
12 xnegeq 12593 . . . . . 6 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
13 xnegpnf 12595 . . . . . 6 -𝑒+∞ = -∞
1412, 13syl6eq 2876 . . . . 5 (𝐴 = +∞ → -𝑒𝐴 = -∞)
15 xnegeq 12593 . . . . 5 (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
1614, 15syl 17 . . . 4 (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞)
17 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1811, 16, 173eqtr4a 2886 . . 3 (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴)
19 xnegeq 12593 . . . . . 6 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
2019, 11syl6eq 2876 . . . . 5 (𝐴 = -∞ → -𝑒𝐴 = +∞)
21 xnegeq 12593 . . . . 5 (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
2220, 21syl 17 . . . 4 (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞)
23 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2413, 22, 233eqtr4a 2886 . . 3 (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴)
2510, 18, 243jaoi 1421 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴)
261, 25sylbi 218 1 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1080   = wceq 1530  wcel 2106  cr 10528  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666  -cneg 10863  -𝑒cxne 12497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-sub 10864  df-neg 10865  df-xneg 12500
This theorem is referenced by:  xneg11  12601  xltneg  12603  xnegdi  12634  xnpcan  12638  xposdif  12648  xrsxmet  23332  xrhmeo  23465  xaddeq0  30391  xrge0npcan  30596  carsgclctunlem2  31464  xnegnegi  41575  xnegnegd  41578  xnegrecl2  41598  supminfxr2  41607  supminfxrrnmpt  41609  xlenegcon1  41625  xlenegcon2  41626
  Copyright terms: Public domain W3C validator