![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegneg | Structured version Visualization version GIF version |
Description: Extended real version of negneg 10531. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegneg | ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12148 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 12240 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | xnegeq 12236 | . . . . 5 ⊢ (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴) |
5 | renegcl 10544 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
6 | rexneg 12240 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) |
8 | recn 10226 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 8 | negnegd 10583 | . . . 4 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
10 | 4, 7, 9 | 3eqtrd 2809 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴) |
11 | xnegmnf 12239 | . . . 4 ⊢ -𝑒-∞ = +∞ | |
12 | xnegeq 12236 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
13 | xnegpnf 12238 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
14 | 12, 13 | syl6eq 2821 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
15 | xnegeq 12236 | . . . . 5 ⊢ (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞) |
17 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
18 | 11, 16, 17 | 3eqtr4a 2831 | . . 3 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴) |
19 | xnegeq 12236 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
20 | 19, 11 | syl6eq 2821 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
21 | xnegeq 12236 | . . . . 5 ⊢ (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞) |
23 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
24 | 13, 22, 23 | 3eqtr4a 2831 | . . 3 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴) |
25 | 10, 18, 24 | 3jaoi 1539 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴) |
26 | 1, 25 | sylbi 207 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1070 = wceq 1631 ∈ wcel 2145 ℝcr 10135 +∞cpnf 10271 -∞cmnf 10272 ℝ*cxr 10273 -cneg 10467 -𝑒cxne 12141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-sub 10468 df-neg 10469 df-xneg 12144 |
This theorem is referenced by: xneg11 12244 xltneg 12246 xnegdi 12276 xnpcan 12280 xposdif 12290 xrsxmet 22825 xrhmeo 22958 xaddeq0 29851 xrge0npcan 30027 carsgclctunlem2 30714 xnegnegi 40175 xnegnegd 40178 xnegrecl2 40199 supminfxr2 40208 supminfxrrnmpt 40210 |
Copyright terms: Public domain | W3C validator |