![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegneg | Structured version Visualization version GIF version |
Description: Extended real version of negneg 10623. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegneg | ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12197 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 12291 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | xnegeq 12287 | . . . . 5 ⊢ (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴) |
5 | renegcl 10636 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
6 | rexneg 12291 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) |
8 | recn 10314 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 8 | negnegd 10675 | . . . 4 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
10 | 4, 7, 9 | 3eqtrd 2837 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴) |
11 | xnegmnf 12290 | . . . 4 ⊢ -𝑒-∞ = +∞ | |
12 | xnegeq 12287 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
13 | xnegpnf 12289 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
14 | 12, 13 | syl6eq 2849 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
15 | xnegeq 12287 | . . . . 5 ⊢ (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞) |
17 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
18 | 11, 16, 17 | 3eqtr4a 2859 | . . 3 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴) |
19 | xnegeq 12287 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
20 | 19, 11 | syl6eq 2849 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
21 | xnegeq 12287 | . . . . 5 ⊢ (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞) |
23 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
24 | 13, 22, 23 | 3eqtr4a 2859 | . . 3 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴) |
25 | 10, 18, 24 | 3jaoi 1553 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴) |
26 | 1, 25 | sylbi 209 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1107 = wceq 1653 ∈ wcel 2157 ℝcr 10223 +∞cpnf 10360 -∞cmnf 10361 ℝ*cxr 10362 -cneg 10557 -𝑒cxne 12190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-sub 10558 df-neg 10559 df-xneg 12193 |
This theorem is referenced by: xneg11 12295 xltneg 12297 xnegdi 12327 xnpcan 12331 xposdif 12341 xrsxmet 22940 xrhmeo 23073 xaddeq0 30036 xrge0npcan 30210 carsgclctunlem2 30897 xnegnegi 40409 xnegnegd 40412 xnegrecl2 40433 supminfxr2 40442 supminfxrrnmpt 40444 |
Copyright terms: Public domain | W3C validator |