Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version |
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8349 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2996 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4652 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | xpdisj1 6079 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2941 ∩ cin 3891 ∅c0 4262 {csn 4565 × cxp 5598 1oc1o 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-xp 5606 df-rel 5607 df-suc 6287 df-1o 8328 |
This theorem is referenced by: undjudom 9973 endjudisj 9974 djuen 9975 dju1dif 9978 dju1p1e2 9979 djucomen 9983 djuassen 9984 xpdjuen 9985 mapdjuen 9986 djudom1 9988 infdju1 9995 bj-2upln1upl 35262 |
Copyright terms: Public domain | W3C validator |