MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp01disjl Structured version   Visualization version   GIF version

Theorem xp01disjl 8314
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 8310 . . 3 1o ≠ ∅
21necomi 3000 . 2 ∅ ≠ 1o
3 disjsn2 4654 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
4 xpdisj1 6063 . 2 (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅)
52, 3, 4mp2b 10 1 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wne 2945  cin 3891  c0 4262  {csn 4567   × cxp 5588  1oc1o 8282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5142  df-xp 5596  df-rel 5597  df-suc 6271  df-1o 8289
This theorem is referenced by:  undjudom  9934  endjudisj  9935  djuen  9936  dju1dif  9939  dju1p1e2  9940  djucomen  9944  djuassen  9945  xpdjuen  9946  mapdjuen  9947  djudom1  9949  infdju1  9956  bj-2upln1upl  35223
  Copyright terms: Public domain W3C validator