| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version | ||
| Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8500 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2986 | . 2 ⊢ ∅ ≠ 1o |
| 3 | disjsn2 4688 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 4 | xpdisj1 6150 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
| 5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2932 ∩ cin 3925 ∅c0 4308 {csn 4601 × cxp 5652 1oc1o 8473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 df-rel 5661 df-suc 6358 df-1o 8480 |
| This theorem is referenced by: undjudom 10182 endjudisj 10183 djuen 10184 dju1dif 10187 dju1p1e2 10188 djucomen 10192 djuassen 10193 xpdjuen 10194 mapdjuen 10195 djudom1 10197 infdju1 10204 bj-2upln1upl 37042 |
| Copyright terms: Public domain | W3C validator |