| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version | ||
| Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8429 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2979 | . 2 ⊢ ∅ ≠ 1o |
| 3 | disjsn2 4672 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 4 | xpdisj1 6122 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
| 5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 ∩ cin 3910 ∅c0 4292 {csn 4585 × cxp 5629 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-xp 5637 df-rel 5638 df-suc 6326 df-1o 8411 |
| This theorem is referenced by: undjudom 10097 endjudisj 10098 djuen 10099 dju1dif 10102 dju1p1e2 10103 djucomen 10107 djuassen 10108 xpdjuen 10109 mapdjuen 10110 djudom1 10112 infdju1 10119 bj-2upln1upl 36985 |
| Copyright terms: Public domain | W3C validator |