| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version | ||
| Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| Ref | Expression |
|---|---|
| xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8403 | . . 3 ⊢ 1o ≠ ∅ | |
| 2 | 1 | necomi 2982 | . 2 ⊢ ∅ ≠ 1o |
| 3 | disjsn2 4662 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 4 | xpdisj1 6108 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
| 5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 ∩ cin 3896 ∅c0 4280 {csn 4573 × cxp 5612 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: undjudom 10059 endjudisj 10060 djuen 10061 dju1dif 10064 dju1p1e2 10065 djucomen 10069 djuassen 10070 xpdjuen 10071 mapdjuen 10072 djudom1 10074 infdju1 10081 bj-2upln1upl 37068 |
| Copyright terms: Public domain | W3C validator |