![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version |
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8544 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 3001 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4737 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | xpdisj1 6192 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 {csn 4648 × cxp 5698 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 df-suc 6401 df-1o 8522 |
This theorem is referenced by: undjudom 10237 endjudisj 10238 djuen 10239 dju1dif 10242 dju1p1e2 10243 djucomen 10247 djuassen 10248 xpdjuen 10249 mapdjuen 10250 djudom1 10252 infdju1 10259 bj-2upln1upl 36990 |
Copyright terms: Public domain | W3C validator |