MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp01disjl Structured version   Visualization version   GIF version

Theorem xp01disjl 8302
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 8300 . . 3 1o ≠ ∅
21necomi 2999 . 2 ∅ ≠ 1o
3 disjsn2 4653 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
4 xpdisj1 6061 . 2 (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅)
52, 3, 4mp2b 10 1 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wne 2944  cin 3890  c0 4261  {csn 4566   × cxp 5586  1oc1o 8274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-opab 5141  df-xp 5594  df-rel 5595  df-suc 6269  df-1o 8281
This theorem is referenced by:  undjudom  9907  endjudisj  9908  djuen  9909  dju1dif  9912  dju1p1e2  9913  djucomen  9917  djuassen  9918  xpdjuen  9919  mapdjuen  9920  djudom1  9922  infdju1  9929  bj-2upln1upl  35193
  Copyright terms: Public domain W3C validator