Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version |
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8300 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2999 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4653 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | xpdisj1 6061 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ≠ wne 2944 ∩ cin 3890 ∅c0 4261 {csn 4566 × cxp 5586 1oc1o 8274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-opab 5141 df-xp 5594 df-rel 5595 df-suc 6269 df-1o 8281 |
This theorem is referenced by: undjudom 9907 endjudisj 9908 djuen 9909 dju1dif 9912 dju1p1e2 9913 djucomen 9917 djuassen 9918 xpdjuen 9919 mapdjuen 9920 djudom1 9922 infdju1 9929 bj-2upln1upl 35193 |
Copyright terms: Public domain | W3C validator |