Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version |
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8310 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 3000 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4654 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | xpdisj1 6063 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ≠ wne 2945 ∩ cin 3891 ∅c0 4262 {csn 4567 × cxp 5588 1oc1o 8282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-opab 5142 df-xp 5596 df-rel 5597 df-suc 6271 df-1o 8289 |
This theorem is referenced by: undjudom 9934 endjudisj 9935 djuen 9936 dju1dif 9939 dju1p1e2 9940 djucomen 9944 djuassen 9945 xpdjuen 9946 mapdjuen 9947 djudom1 9949 infdju1 9956 bj-2upln1upl 35223 |
Copyright terms: Public domain | W3C validator |