![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp01disjl | Structured version Visualization version GIF version |
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
Ref | Expression |
---|---|
xp01disjl | ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8509 | . . 3 ⊢ 1o ≠ ∅ | |
2 | 1 | necomi 2984 | . 2 ⊢ ∅ ≠ 1o |
3 | disjsn2 4718 | . 2 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
4 | xpdisj1 6167 | . 2 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅) | |
5 | 2, 3, 4 | mp2b 10 | 1 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ≠ wne 2929 ∩ cin 3943 ∅c0 4322 {csn 4630 × cxp 5676 1oc1o 8480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5212 df-xp 5684 df-rel 5685 df-suc 6377 df-1o 8487 |
This theorem is referenced by: undjudom 10192 endjudisj 10193 djuen 10194 dju1dif 10197 dju1p1e2 10198 djucomen 10202 djuassen 10203 xpdjuen 10204 mapdjuen 10205 djudom1 10207 infdju1 10214 bj-2upln1upl 36634 |
Copyright terms: Public domain | W3C validator |