| Metamath
Proof Explorer Theorem List (p. 86 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | om00el 8501 | The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·o 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))) | ||
| Theorem | omordlim 8502* | Ordering involving the product of a limit ordinal. Proposition 8.23 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.) |
| ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) ∧ 𝐶 ∈ (𝐴 ·o 𝐵)) → ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) | ||
| Theorem | omlimcl 8503 | The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.) |
| ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝐵)) | ||
| Theorem | odi 8504 | Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. Theorem 4.3 of [Schloeder] p. 12. (Contributed by NM, 26-Dec-2004.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) | ||
| Theorem | omass 8505 | Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. Theorem 4.4 of [Schloeder] p. 13. (Contributed by NM, 28-Dec-2004.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) | ||
| Theorem | oneo 8506 | If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵)) | ||
| Theorem | omeulem1 8507* | Lemma for omeu 8510: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵) | ||
| Theorem | omeulem2 8508 | Lemma for omeu 8510: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → ((𝐵 ∈ 𝐷 ∨ (𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸))) | ||
| Theorem | omopth2 8509 | An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) → (((𝐴 ·o 𝐵) +o 𝐶) = ((𝐴 ·o 𝐷) +o 𝐸) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) | ||
| Theorem | omeu 8510* | The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑧∃𝑥 ∈ On ∃𝑦 ∈ 𝐴 (𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝐴 ·o 𝑥) +o 𝑦) = 𝐵)) | ||
| Theorem | oen0 8511 | Ordinal exponentiation with a nonzero base is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ↑o 𝐵)) | ||
| Theorem | oeordi 8512 | Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 → (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | ||
| Theorem | oeord 8513 | Ordering property of ordinal exponentiation. Corollary 8.34 of [TakeutiZaring] p. 68 and its converse. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ∈ 𝐵 ↔ (𝐶 ↑o 𝐴) ∈ (𝐶 ↑o 𝐵))) | ||
| Theorem | oecan 8514 | Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
| ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o 𝐵) = (𝐴 ↑o 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | oeword 8515 | Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) | ||
| Theorem | oewordi 8516 | Weak ordering property of ordinal exponentiation. Lemma 3.19 of [Schloeder] p. 10. (Contributed by NM, 6-Jan-2005.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 → (𝐶 ↑o 𝐴) ⊆ (𝐶 ↑o 𝐵))) | ||
| Theorem | oewordri 8517 | Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o 𝐶) ⊆ (𝐵 ↑o 𝐶))) | ||
| Theorem | oeworde 8518 | Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. Lemma 3.20 of [Schloeder] p. 10. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.) |
| ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) | ||
| Theorem | oeordsuc 8519 | Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑o suc 𝐶) ∈ (𝐵 ↑o suc 𝐶))) | ||
| Theorem | oelim2 8520* | Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.) |
| ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ (𝐵 ∖ 1o)(𝐴 ↑o 𝑥)) | ||
| Theorem | oeoalem 8521 | Lemma for oeoa 8522. (Contributed by Eric Schmidt, 26-May-2009.) |
| ⊢ 𝐴 ∈ On & ⊢ ∅ ∈ 𝐴 & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐶 ∈ On → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) | ||
| Theorem | oeoa 8522 | Sum of exponents law for ordinal exponentiation. Theorem 8R of [Enderton] p. 238. Also Proposition 8.41 of [TakeutiZaring] p. 69. Theorem 4.7 of [Schloeder] p. 14. (Contributed by Eric Schmidt, 26-May-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) | ||
| Theorem | oeoelem 8523 | Lemma for oeoe 8524. (Contributed by Eric Schmidt, 26-May-2009.) |
| ⊢ 𝐴 ∈ On & ⊢ ∅ ∈ 𝐴 ⇒ ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o 𝐵) ↑o 𝐶) = (𝐴 ↑o (𝐵 ·o 𝐶))) | ||
| Theorem | oeoe 8524 | Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ↑o 𝐵) ↑o 𝐶) = (𝐴 ↑o (𝐵 ·o 𝐶))) | ||
| Theorem | oelimcl 8525 | The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.) |
| ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → Lim (𝐴 ↑o 𝐵)) | ||
| Theorem | oeeulem 8526* | Lemma for oeeu 8528. (Contributed by Mario Carneiro, 28-Feb-2013.) |
| ⊢ 𝑋 = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑o 𝑥)} ⇒ ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴 ↑o 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑o suc 𝑋))) | ||
| Theorem | oeeui 8527* | The division algorithm for ordinal exponentiation. (This version of oeeu 8528 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 8510.) (Contributed by Mario Carneiro, 25-May-2015.) |
| ⊢ 𝑋 = ∪ ∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑o 𝑥)} & ⊢ 𝑃 = (℩𝑤∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) & ⊢ 𝑌 = (1st ‘𝑃) & ⊢ 𝑍 = (2nd ‘𝑃) ⇒ ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴 ↑o 𝐶)) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) | ||
| Theorem | oeeu 8528* | The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.) |
| ⊢ ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃!𝑤∃𝑥 ∈ On ∃𝑦 ∈ (𝐴 ∖ 1o)∃𝑧 ∈ (𝐴 ↑o 𝑥)(𝑤 = 〈𝑥, 𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑥) ·o 𝑦) +o 𝑧) = 𝐵)) | ||
| Theorem | nna0 8529 | Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) |
| ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) | ||
| Theorem | nnm0 8530 | Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) |
| ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅) | ||
| Theorem | nnasuc 8531 | Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) | ||
| Theorem | nnmsuc 8532 | Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) | ||
| Theorem | nnesuc 8533 | Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) | ||
| Theorem | nna0r 8534 | Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8463) so that we can avoid ax-rep 5221, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) | ||
| Theorem | nnm0r 8535 | Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) | ||
| Theorem | nnacl 8536 | Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | ||
| Theorem | nnmcl 8537 | Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | ||
| Theorem | nnecl 8538 | Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) | ||
| Theorem | nnacli 8539 | ω is closed under addition. Inference form of nnacl 8536. (Contributed by Scott Fenton, 20-Apr-2012.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω ⇒ ⊢ (𝐴 +o 𝐵) ∈ ω | ||
| Theorem | nnmcli 8540 | ω is closed under multiplication. Inference form of nnmcl 8537. (Contributed by Scott Fenton, 20-Apr-2012.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω ⇒ ⊢ (𝐴 ·o 𝐵) ∈ ω | ||
| Theorem | nnarcl 8541 | Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω))) | ||
| Theorem | nnacom 8542 | Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) | ||
| Theorem | nnaordi 8543 | Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
| Theorem | nnaord 8544 | Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
| Theorem | nnaordr 8545 | Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))) | ||
| Theorem | nnawordi 8546 | Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) | ||
| Theorem | nnaass 8547 | Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) | ||
| Theorem | nndi 8548 | Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) | ||
| Theorem | nnmass 8549 | Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) | ||
| Theorem | nnmsucr 8550 | Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)) | ||
| Theorem | nnmcom 8551 | Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | ||
| Theorem | nnaword 8552 | Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) | ||
| Theorem | nnacan 8553 | Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | nnaword1 8554 | Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝐵)) | ||
| Theorem | nnaword2 8555 | Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐵 +o 𝐴)) | ||
| Theorem | nnmordi 8556 | Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
| Theorem | nnmord 8557 | Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
| Theorem | nnmword 8558 | Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
| Theorem | nnmcan 8559 | Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | nnmwordi 8560 | Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
| Theorem | nnmwordri 8561 | Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))) | ||
| Theorem | nnawordex 8562* | Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)) | ||
| Theorem | nnaordex 8563* | Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | ||
| Theorem | nnaordex2 8564* | Equivalence for ordering. (Contributed by Scott Fenton, 18-Apr-2025.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o suc 𝑥) = 𝐵)) | ||
| Theorem | 1onn 8565 | The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7675, see 1onnALT 8566. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7675. (Revised by BTernaryTau, 1-Dec-2024.) |
| ⊢ 1o ∈ ω | ||
| Theorem | 1onnALT 8566 | Shorter proof of 1onn 8565 using Peano's postulates that depends on ax-un 7675. (Contributed by NM, 29-Oct-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 1o ∈ ω | ||
| Theorem | 2onn 8567 | The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7675, see 2onnALT 8568. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7675. (Revised by BTernaryTau, 1-Dec-2024.) |
| ⊢ 2o ∈ ω | ||
| Theorem | 2onnALT 8568 | Shorter proof of 2onn 8567 using Peano's postulates that depends on ax-un 7675. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 2o ∈ ω | ||
| Theorem | 3onn 8569 | The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ 3o ∈ ω | ||
| Theorem | 4onn 8570 | The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ 4o ∈ ω | ||
| Theorem | 1one2o 8571 | Ordinal one is not ordinal two. Analogous to 1ne2 12349. (Contributed by AV, 17-Oct-2023.) |
| ⊢ 1o ≠ 2o | ||
| Theorem | oaabslem 8572 | Lemma for oaabs 8573. (Contributed by NM, 9-Dec-2004.) |
| ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω) | ||
| Theorem | oaabs 8573 | Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵) | ||
| Theorem | oaabs2 8574 | The absorption law oaabs 8573 is also a property of higher powers of ω. (Contributed by Mario Carneiro, 29-May-2015.) |
| ⊢ (((𝐴 ∈ (ω ↑o 𝐶) ∧ 𝐵 ∈ On) ∧ (ω ↑o 𝐶) ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵) | ||
| Theorem | omabslem 8575 | Lemma for omabs 8576. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) | ||
| Theorem | omabs 8576 | Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵)) | ||
| Theorem | nnm1 8577 | Multiply an element of ω by 1o. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) | ||
| Theorem | nnm2 8578 | Multiply an element of ω by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴)) | ||
| Theorem | nn2m 8579 | Multiply an element of ω by 2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 +o 𝐴)) | ||
| Theorem | nnneo 8580 | If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵)) | ||
| Theorem | nneob 8581* | A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ ω 𝐴 = (2o ·o 𝑥) ↔ ¬ ∃𝑥 ∈ ω suc 𝐴 = (2o ·o 𝑥))) | ||
| Theorem | omsmolem 8582* | Lemma for omsmo 8583. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.) |
| ⊢ (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧 ∈ 𝑦 → (𝐹‘𝑧) ∈ (𝐹‘𝑦)))) | ||
| Theorem | omsmo 8583* | A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.) |
| ⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1→𝐴) | ||
| Theorem | omopthlem1 8584 | Lemma for omopthi 8586. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐶 ∈ ω ⇒ ⊢ (𝐴 ∈ 𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶)) | ||
| Theorem | omopthlem2 8585 | Lemma for omopthi 8586. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐶 ∈ ω & ⊢ 𝐷 ∈ ω ⇒ ⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵)) | ||
| Theorem | omopthi 8586 | An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 14195. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐶 ∈ ω & ⊢ 𝐷 ∈ ω ⇒ ⊢ ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | omopth 8587 | An ordered pair theorem for finite integers. Analogous to nn0opthi 14195. (Contributed by Scott Fenton, 1-May-2012.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ ω)) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | nnasmo 8588* | There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ (𝐴 ∈ ω → ∃*𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) | ||
| Theorem | eldifsucnn 8589* | Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.) |
| ⊢ (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥)) | ||
| Syntax | cnadd 8590 | Declare the syntax for natural ordinal addition. See df-nadd 8591. |
| class +no | ||
| Definition | df-nadd 8591* | Define natural ordinal addition. This is a commutative form of addition over the ordinals. (Contributed by Scott Fenton, 26-Aug-2024.) |
| ⊢ +no = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ ∩ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st ‘𝑧)} × (2nd ‘𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st ‘𝑧) × {(2nd ‘𝑧)})) ⊆ 𝑤)})) | ||
| Theorem | on2recsfn 8592* | Show that double recursion over ordinals yields a function over pairs of ordinals. (Contributed by Scott Fenton, 3-Sep-2024.) |
| ⊢ 𝐹 = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), 𝐺) ⇒ ⊢ 𝐹 Fn (On × On) | ||
| Theorem | on2recsov 8593* | Calculate the value of the double ordinal recursion operator. (Contributed by Scott Fenton, 3-Sep-2024.) |
| ⊢ 𝐹 = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st ‘𝑥) E (1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), 𝐺) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐹𝐵) = (〈𝐴, 𝐵〉𝐺(𝐹 ↾ ((suc 𝐴 × suc 𝐵) ∖ {〈𝐴, 𝐵〉})))) | ||
| Theorem | on2ind 8594* | Double induction over ordinal numbers. (Contributed by Scott Fenton, 26-Aug-2024.) |
| ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) & ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) & ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 𝜒 ∧ ∀𝑐 ∈ 𝑎 𝜓 ∧ ∀𝑑 ∈ 𝑏 𝜃) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On) → 𝜂) | ||
| Theorem | on3ind 8595* | Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024.) |
| ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑 ∈ 𝑎 ∀𝑒 ∈ 𝑏 ∀𝑓 ∈ 𝑐 𝜃 ∧ ∀𝑑 ∈ 𝑎 ∀𝑒 ∈ 𝑏 𝜒 ∧ ∀𝑑 ∈ 𝑎 ∀𝑓 ∈ 𝑐 𝜁) ∧ (∀𝑑 ∈ 𝑎 𝜓 ∧ ∀𝑒 ∈ 𝑏 ∀𝑓 ∈ 𝑐 𝜏 ∧ ∀𝑒 ∈ 𝑏 𝜎) ∧ ∀𝑓 ∈ 𝑐 𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On) → 𝜆) | ||
| Theorem | coflton 8596* | Cofinality theorem for ordinals. If 𝐴 is cofinal with 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Compare cofsslt 27849 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ On) & ⊢ (𝜑 → 𝐵 ⊆ On) & ⊢ (𝜑 → 𝐶 ⊆ On) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝑧 ∈ 𝑤) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐶 𝑎 ∈ 𝑐) | ||
| Theorem | cofon1 8597* | Cofinality theorem for ordinals. If 𝐴 is cofinal with 𝐵 and the upper bound of 𝐴 dominates 𝐵, then their upper bounds are equal. Compare with cofcut1 27851 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝒫 On) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) & ⊢ (𝜑 → 𝐵 ⊆ ∩ {𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧}) ⇒ ⊢ (𝜑 → ∩ {𝑧 ∈ On ∣ 𝐴 ⊆ 𝑧} = ∩ {𝑤 ∈ On ∣ 𝐵 ⊆ 𝑤}) | ||
| Theorem | cofon2 8598* | Cofinality theorem for ordinals. If 𝐴 and 𝐵 are mutually cofinal, then their upper bounds agree. Compare cofcut2 27853 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝒫 On) & ⊢ (𝜑 → 𝐵 ∈ 𝒫 On) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤) ⇒ ⊢ (𝜑 → ∩ {𝑎 ∈ On ∣ 𝐴 ⊆ 𝑎} = ∩ {𝑏 ∈ On ∣ 𝐵 ⊆ 𝑏}) | ||
| Theorem | cofonr 8599* | Inverse cofinality law for ordinals. Contrast with cofcutr 27855 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐴 = ∩ {𝑥 ∈ On ∣ 𝑋 ⊆ 𝑥}) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝑋 𝑦 ⊆ 𝑧) | ||
| Theorem | naddfn 8600 | Natural addition is a function over pairs of ordinals. (Contributed by Scott Fenton, 26-Aug-2024.) |
| ⊢ +no Fn (On × On) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |