![]() |
Metamath
Proof Explorer Theorem List (p. 86 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tz7.49 8501* | Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 10-Jan-2013.) |
⊢ 𝐹 Fn On & ⊢ (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) | ||
Theorem | tz7.49c 8502* | Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.) |
⊢ 𝐹 Fn On ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) | ||
Syntax | cseqom 8503 | Extend class notation to include index-aware recursive definitions. |
class seqω(𝐹, 𝐼) | ||
Definition | df-seqom 8504* | Index-aware recursive definitions over ω. A mashup of df-rdg 8466 and df-seq 14053, this allows for recursive definitions that use an index in the recursion in cases where Infinity is not admitted. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
⊢ seqω(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) “ ω) | ||
Theorem | seqomlem0 8505* | Lemma for seqω. Change bound variables. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) | ||
Theorem | seqomlem1 8506* | Lemma for seqω. The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.) |
⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ⇒ ⊢ (𝐴 ∈ ω → (𝑄‘𝐴) = 〈𝐴, (2nd ‘(𝑄‘𝐴))〉) | ||
Theorem | seqomlem2 8507* | Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.) |
⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ⇒ ⊢ (𝑄 “ ω) Fn ω | ||
Theorem | seqomlem3 8508* | Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ⇒ ⊢ ((𝑄 “ ω)‘∅) = ( I ‘𝐼) | ||
Theorem | seqomlem4 8509* | Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.) |
⊢ 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) ⇒ ⊢ (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴))) | ||
Theorem | seqomeq12 8510 | Equality theorem for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → seqω(𝐴, 𝐶) = seqω(𝐵, 𝐷)) | ||
Theorem | fnseqom 8511 | An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
⊢ 𝐺 = seqω(𝐹, 𝐼) ⇒ ⊢ 𝐺 Fn ω | ||
Theorem | seqom0g 8512 | Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by AV, 17-Sep-2021.) |
⊢ 𝐺 = seqω(𝐹, 𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐺‘∅) = 𝐼) | ||
Theorem | seqomsuc 8513 | Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
⊢ 𝐺 = seqω(𝐹, 𝐼) ⇒ ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺‘𝐴))) | ||
Theorem | omsucelsucb 8514 | Membership is inherited by successors for natural numbers. (Contributed by AV, 15-Sep-2023.) |
⊢ (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω) | ||
Syntax | c1o 8515 | Extend the definition of a class to include the ordinal number 1. |
class 1o | ||
Syntax | c2o 8516 | Extend the definition of a class to include the ordinal number 2. |
class 2o | ||
Syntax | c3o 8517 | Extend the definition of a class to include the ordinal number 3. |
class 3o | ||
Syntax | c4o 8518 | Extend the definition of a class to include the ordinal number 4. |
class 4o | ||
Syntax | coa 8519 | Extend the definition of a class to include the ordinal addition operation. |
class +o | ||
Syntax | comu 8520 | Extend the definition of a class to include the ordinal multiplication operation. |
class ·o | ||
Syntax | coe 8521 | Extend the definition of a class to include the ordinal exponentiation operation. |
class ↑o | ||
Definition | df-1o 8522 | Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
⊢ 1o = suc ∅ | ||
Definition | df-2o 8523 | Define the ordinal number 2. Lemma 3.17 of [Schloeder] p. 10. (Contributed by NM, 18-Feb-2004.) |
⊢ 2o = suc 1o | ||
Definition | df-3o 8524 | Define the ordinal number 3. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ 3o = suc 2o | ||
Definition | df-4o 8525 | Define the ordinal number 4. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ 4o = suc 3o | ||
Definition | df-oadd 8526* | Define the ordinal addition operation. (Contributed by NM, 3-May-1995.) |
⊢ +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)) | ||
Definition | df-omul 8527* | Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.) |
⊢ ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) | ||
Definition | df-oexp 8528* | Define the ordinal exponentiation operation. (Contributed by NM, 30-Dec-2004.) |
⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))) | ||
Theorem | df1o2 8529 | Expanded value of the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 4-Nov-2002.) |
⊢ 1o = {∅} | ||
Theorem | df2o3 8530 | Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 2o = {∅, 1o} | ||
Theorem | df2o2 8531 | Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
⊢ 2o = {∅, {∅}} | ||
Theorem | 1oex 8532 | Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2141, ax-11 2158, ax-12 2178, ax-un 7770. (Revised by Zhi Wang, 19-Sep-2024.) |
⊢ 1o ∈ V | ||
Theorem | 2oex 8533 | 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2141, ax-11 2158, ax-12 2178, ax-un 7770. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
⊢ 2o ∈ V | ||
Theorem | 1on 8534 | Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7770. (Revised by BTernaryTau, 30-Nov-2024.) |
⊢ 1o ∈ On | ||
Theorem | 1onOLD 8535 | Obsolete version of 1on 8534 as of 30-Nov-2024. (Contributed by NM, 29-Oct-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1o ∈ On | ||
Theorem | 2on 8536 | Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Avoid ax-un 7770. (Revised by BTernaryTau, 30-Nov-2024.) |
⊢ 2o ∈ On | ||
Theorem | 2onOLD 8537 | Obsolete version of 2on 8536 as of 30-Nov-2024. (Contributed by NM, 18-Feb-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 2o ∈ On | ||
Theorem | 2on0 8538 | Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
⊢ 2o ≠ ∅ | ||
Theorem | ord3 8539 | Ordinal 3 is an ordinal class. (Contributed by BTernaryTau, 6-Jan-2025.) |
⊢ Ord 3o | ||
Theorem | 3on 8540 | Ordinal 3 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 3o ∈ On | ||
Theorem | 4on 8541 | Ordinal 4 is an ordinal number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 4o ∈ On | ||
Theorem | 1oexOLD 8542 | Obsolete version of 1oex 8532 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1o ∈ V | ||
Theorem | 2oexOLD 8543 | Obsolete version of 2oex 8533 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 2o ∈ V | ||
Theorem | 1n0 8544 | Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
⊢ 1o ≠ ∅ | ||
Theorem | nlim1 8545 | 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ Lim 1o | ||
Theorem | nlim2 8546 | 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ Lim 2o | ||
Theorem | xp01disj 8547 | Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.) |
⊢ ((𝐴 × {∅}) ∩ (𝐶 × {1o})) = ∅ | ||
Theorem | xp01disjl 8548 | Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.) |
⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ | ||
Theorem | ordgt0ge1 8549 | Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.) |
⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | ||
Theorem | ordge1n0 8550 | An ordinal greater than or equal to 1 is nonzero. (Contributed by NM, 21-Dec-2004.) |
⊢ (Ord 𝐴 → (1o ⊆ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
Theorem | el1o 8551 | Membership in ordinal one. (Contributed by NM, 5-Jan-2005.) |
⊢ (𝐴 ∈ 1o ↔ 𝐴 = ∅) | ||
Theorem | ord1eln01 8552 | An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Ord 𝐴 → (1o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o))) | ||
Theorem | ord2eln012 8553 | An ordinal that is not 0, 1, or 2 contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Ord 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) | ||
Theorem | 1ellim 8554 | A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Lim 𝐴 → 1o ∈ 𝐴) | ||
Theorem | 2ellim 8555 | A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
⊢ (Lim 𝐴 → 2o ∈ 𝐴) | ||
Theorem | dif1o 8556 | Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.) |
⊢ (𝐴 ∈ (𝐵 ∖ 1o) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ ∅)) | ||
Theorem | ondif1 8557 | Two ways to say that 𝐴 is a nonzero ordinal number. Lemma 1.10 of [Schloeder] p. 2. (Contributed by Mario Carneiro, 21-May-2015.) |
⊢ (𝐴 ∈ (On ∖ 1o) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) | ||
Theorem | ondif2 8558 | Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.) |
⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) | ||
Theorem | 2oconcl 8559 | Closure of the pair swapping function on 2o. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ (𝐴 ∈ 2o → (1o ∖ 𝐴) ∈ 2o) | ||
Theorem | 0lt1o 8560 | Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.) |
⊢ ∅ ∈ 1o | ||
Theorem | dif20el 8561 | An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.) |
⊢ (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴) | ||
Theorem | 0we1 8562 | The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ ∅ We 1o | ||
Theorem | brwitnlem 8563 | Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝑅 = (◡𝑂 “ (V ∖ 1o)) & ⊢ 𝑂 Fn 𝑋 ⇒ ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅) | ||
Theorem | fnoa 8564 | Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ +o Fn (On × On) | ||
Theorem | fnom 8565 | Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ·o Fn (On × On) | ||
Theorem | fnoe 8566 | Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ ↑o Fn (On × On) | ||
Theorem | oav 8567* | Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) | ||
Theorem | omv 8568* | Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) | ||
Theorem | oe0lem 8569 | A helper lemma for oe0 8578 and others. (Contributed by NM, 6-Jan-2005.) |
⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝜓) & ⊢ (((𝐴 ∈ On ∧ 𝜑) ∧ ∅ ∈ 𝐴) → 𝜓) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝜑) → 𝜓) | ||
Theorem | oev 8570* | Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = if(𝐴 = ∅, (1o ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) | ||
Theorem | oevn0 8571* | Value of ordinal exponentiation at a nonzero base. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | ||
Theorem | oa0 8572 | Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | ||
Theorem | om0 8573 | Ordinal multiplication with zero. Definition 8.15(a) of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. See om0x 8575 for a way to remove the antecedent 𝐴 ∈ On. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) | ||
Theorem | oe0m 8574 | Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | ||
Theorem | om0x 8575 | Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. Unlike om0 8573, this version works whether or not 𝐴 is an ordinal. However, since it is an artifact of our particular function value definition outside the domain, we will not use it in order to be conventional and present it only as a curiosity. (Contributed by NM, 1-Feb-1996.) (New usage is discouraged.) |
⊢ (𝐴 ·o ∅) = ∅ | ||
Theorem | oe0m0 8576 | Ordinal exponentiation with zero base and zero exponent. Proposition 8.31 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) |
⊢ (∅ ↑o ∅) = 1o | ||
Theorem | oe0m1 8577 | Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 5-Jan-2005.) |
⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) | ||
Theorem | oe0 8578 | Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) | ||
Theorem | oev2 8579* | Alternate value of ordinal exponentiation. Compare oev 8570. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ ∩ 𝐴) ∪ ∩ 𝐵))) | ||
Theorem | oasuc 8580 | Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) | ||
Theorem | oesuclem 8581* | Lemma for oesuc 8583. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ Lim 𝑋 & ⊢ (𝐵 ∈ 𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝑋) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) | ||
Theorem | omsuc 8582 | Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) | ||
Theorem | oesuc 8583 | Ordinal exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) | ||
Theorem | onasuc 8584 | Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Note that this version of oasuc 8580 does not need Replacement.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵)) | ||
Theorem | onmsuc 8585 | Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) | ||
Theorem | onesuc 8586 | Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) | ||
Theorem | oa1suc 8587 | Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. Remark 2.4 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴) | ||
Theorem | oalim 8588* | Ordinal addition with a limit ordinal. Definition 8.1 of [TakeutiZaring] p. 56. Definition 2.3 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 +o 𝑥)) | ||
Theorem | omlim 8589* | Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) | ||
Theorem | oelim 8590* | Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) | ||
Theorem | oacl 8591 | Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) | ||
Theorem | omcl 8592 | Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) | ||
Theorem | oecl 8593 | Closure law for ordinal exponentiation. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 1-Jan-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | ||
Theorem | oa0r 8594 | Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Lemma 2.14 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) | ||
Theorem | om0r 8595 | Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.) |
⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) | ||
Theorem | o1p1e2 8596 | 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004.) |
⊢ (1o +o 1o) = 2o | ||
Theorem | o2p2e4 8597 | 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc 6401. For the usual proof using complex numbers, see 2p2e4 12428. (Contributed by NM, 18-Aug-2021.) Avoid ax-rep 5303, from a comment by Sophie. (Revised by SN, 23-Mar-2024.) |
⊢ (2o +o 2o) = 4o | ||
Theorem | om1 8598 | Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 29-Oct-1995.) |
⊢ (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴) | ||
Theorem | om1r 8599 | Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.) |
⊢ (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴) | ||
Theorem | oe1 8600 | Ordinal exponentiation with an exponent of 1. Lemma 2.16 of [Schloeder] p. 6. (Contributed by NM, 2-Jan-2005.) |
⊢ (𝐴 ∈ On → (𝐴 ↑o 1o) = 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |