![]() |
Metamath
Proof Explorer Theorem List (p. 86 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28364) |
![]() (28365-29889) |
![]() (29890-43671) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nnunifi 8501 | The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) | ||
Theorem | unblem1 8502* | Lemma for unbnn 8506. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.) |
⊢ (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∩ (𝐵 ∖ suc 𝐴) ∈ 𝐵) | ||
Theorem | unblem2 8503* | Lemma for unbnn 8506. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) | ||
Theorem | unblem3 8504* | Lemma for unbnn 8506. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) | ||
Theorem | unblem4 8505* | Lemma for unbnn 8506. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) | ||
Theorem | unbnn 8506* | Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 8855 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) | ||
Theorem | unbnn2 8507* | Version of unbnn 8506 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) | ||
Theorem | isfinite2 8508 | Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.) |
⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | ||
Theorem | nnsdomg 8509 | Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 15-Jun-1998.) |
⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
Theorem | isfiniteg 8510 | A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | ||
Theorem | infsdomnn 8511 | An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
Theorem | infn0 8512 | An infinite set is not empty. (Contributed by NM, 23-Oct-2004.) |
⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
Theorem | fin2inf 8513 | This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
⊢ (𝐴 ≺ ω → ω ∈ V) | ||
Theorem | unfilem1 8514* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) | ||
Theorem | unfilem2 8515* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) | ||
Theorem | unfilem3 8516 | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) | ||
Theorem | unfi 8517 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | unfir 8518 | If a union is finite, the operands are finite. Converse of unfi 8517. (Contributed by FL, 3-Aug-2009.) |
⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
Theorem | unfi2 8519 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. This version of unfi 8517 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 8513). (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | ||
Theorem | difinf 8520 | An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) | ||
Theorem | xpfi 8521 | The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
Theorem | 3xpfi 8522 | The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
⊢ (𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin) | ||
Theorem | domunfican 8523 | A finite set union cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) | ||
Theorem | infcntss 8524* | Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) | ||
Theorem | prfi 8525 | An unordered pair is finite. (Contributed by NM, 22-Aug-2008.) |
⊢ {𝐴, 𝐵} ∈ Fin | ||
Theorem | tpfi 8526 | An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013.) |
⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | ||
Theorem | fiint 8527* | Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of 𝐴 is in 𝐴". This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
Theorem | fnfi 8528 | A version of fnex 6755 for finite sets that does not require Replacement. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
Theorem | fodomfi 8529 | An onto function implies dominance of domain over range, for finite sets. Unlike fodom 9681 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
Theorem | fodomfib 8530* | Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 9685 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) |
⊢ (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) | ||
Theorem | fofinf1o 8531 | Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014.) |
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐵) | ||
Theorem | rneqdmfinf1o 8532 | Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) | ||
Theorem | fidomdm 8533 | Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) | ||
Theorem | dmfi 8534 | The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | ||
Theorem | fundmfibi 8535 | A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | ||
Theorem | resfnfinfin 8536 | The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) | ||
Theorem | residfi 8537 | A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) | ||
Theorem | cnvfi 8538 | If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
Theorem | rnfi 8539 | The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | ||
Theorem | f1dmvrnfibi 8540 | A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 8541. (Contributed by AV, 10-Jan-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
Theorem | f1vrnfibi 8541 | A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 8540. (Contributed by AV, 10-Jan-2020.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
Theorem | fofi 8542 | If a function has a finite domain, its range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) | ||
Theorem | f1fi 8543 | If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) | ||
Theorem | iunfi 8544* | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This is the indexed union version of unifi 8545. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
Theorem | unifi 8545 | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. (Contributed by NM, 22-Aug-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∪ 𝐴 ∈ Fin) | ||
Theorem | unifi2 8546* | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This version of unifi 8545 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 8513). (Contributed by NM, 11-Mar-2006.) |
⊢ ((𝐴 ≺ ω ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ ω) → ∪ 𝐴 ≺ ω) | ||
Theorem | infssuni 8547* | If an infinite set 𝐴 is included in the underlying set of a finite cover 𝐵, then there exists a set of the cover that contains an infinite number of element of 𝐴. (Contributed by FL, 2-Aug-2009.) |
⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝐵) → ∃𝑥 ∈ 𝐵 ¬ (𝐴 ∩ 𝑥) ∈ Fin) | ||
Theorem | unirnffid 8548 | The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐹:𝑇⟶Fin) & ⊢ (𝜑 → 𝑇 ∈ Fin) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ∈ Fin) | ||
Theorem | imafi 8549 | Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
Theorem | pwfilem 8550* | Lemma for pwfi 8551. (Contributed by NM, 26-Mar-2007.) |
⊢ 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥})) ⇒ ⊢ (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin) | ||
Theorem | pwfi 8551 | The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) |
⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | ||
Theorem | mapfi 8552 | Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑𝑚 𝐵) ∈ Fin) | ||
Theorem | ixpfi 8553* | A Cartesian product of finitely many finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
Theorem | ixpfi2 8554* | A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that 𝐵(𝑥) and 𝐷(𝑥) are both possibly dependent on 𝑥.) (Contributed by Mario Carneiro, 25-Jan-2015.) |
⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝐵 ⊆ {𝐷}) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
Theorem | mptfi 8555* | A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | ||
Theorem | abrexfi 8556* | An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014.) |
⊢ (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ Fin) | ||
Theorem | cnvimamptfin 8557* | A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi 8573, the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018.) |
⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → (◡(𝑝 ∈ 𝑁 ↦ 𝑋) “ 𝑌) ∈ Fin) | ||
Theorem | elfpw 8558 | Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐴 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ Fin)) | ||
Theorem | unifpw 8559 | A set is the union of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ ∪ (𝒫 𝐴 ∩ Fin) = 𝐴 | ||
Theorem | f1opwfi 8560* | A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.) |
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹 “ 𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin)) | ||
Theorem | fissuni 8561* | A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
⊢ ((𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 ⊆ ∪ 𝑐) | ||
Theorem | fipreima 8562* | Given a finite subset 𝐴 of the range of a function, there exists a finite subset of the domain whose image is 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹 “ 𝑐) = 𝐴) | ||
Theorem | finsschain 8563* | A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub 22268 and others. (Contributed by Jeff Hankins, 25-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 18-May-2015.) |
⊢ (((𝐴 ≠ ∅ ∧ [⊊] Or 𝐴) ∧ (𝐵 ∈ Fin ∧ 𝐵 ⊆ ∪ 𝐴)) → ∃𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧) | ||
Theorem | indexfi 8564* | If for every element of a finite indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a finite subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Proven without the Axiom of Choice, unlike indexdom 34163. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑐 𝜑 ∧ ∀𝑦 ∈ 𝑐 ∃𝑥 ∈ 𝐴 𝜑)) | ||
Syntax | cfsupp 8565 | Extend class definition to include the predicate to be a finitely supported function. |
class finSupp | ||
Definition | df-fsupp 8566* | Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | ||
Theorem | relfsupp 8567 | The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
⊢ Rel finSupp | ||
Theorem | relprcnfsupp 8568 | A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.) |
⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍) | ||
Theorem | isfsupp 8569 | The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) | ||
Theorem | funisfsupp 8570 | The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
⊢ ((Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin)) | ||
Theorem | fsuppimp 8571 | Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.) |
⊢ (𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)) | ||
Theorem | fsuppimpd 8572 | A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | fisuppfi 8573 | A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) | ||
Theorem | fdmfisuppfi 8574 | The support of a function with a finite domain is always finite. (Contributed by AV, 27-Apr-2019.) |
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | fdmfifsupp 8575 | A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | fsuppmptdm 8576* | A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | fndmfisuppfi 8577 | The support of a function with a finite domain is always finite. (Contributed by AV, 25-May-2019.) |
⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | fndmfifsupp 8578 | A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.) |
⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | suppeqfsuppbi 8579 | If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019.) |
⊢ (((𝐹 ∈ 𝑈 ∧ Fun 𝐹) ∧ (𝐺 ∈ 𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍))) | ||
Theorem | suppssfifsupp 8580 | If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.) |
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppsssupp 8581 | If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019.) (Proof shortened by AV, 15-Jul-2019.) |
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppxpfi 8582 | The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019.) |
⊢ ((𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin) | ||
Theorem | fczfsuppd 8583 | A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍) | ||
Theorem | fsuppun 8584 | The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) ∈ Fin) | ||
Theorem | fsuppunfi 8585 | The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin) | ||
Theorem | fsuppunbi 8586 | If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019.) |
⊢ (𝜑 → Fun (𝐹 ∪ 𝐺)) ⇒ ⊢ (𝜑 → ((𝐹 ∪ 𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ 𝐺 finSupp 𝑍))) | ||
Theorem | 0fsupp 8587 | The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
⊢ (𝑍 ∈ 𝑉 → ∅ finSupp 𝑍) | ||
Theorem | snopfsupp 8588 | A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) | ||
Theorem | funsnfsupp 8589 | Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.) |
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍)) | ||
Theorem | fsuppres 8590 | The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) | ||
Theorem | ressuppfi 8591 | If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.) |
⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) & ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
Theorem | resfsupp 8592 | If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.) |
⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | resfifsupp 8593 | The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) | ||
Theorem | frnfsuppbi 8594 | Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.) |
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) | ||
Theorem | fsuppmptif 8595* | A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) | ||
Theorem | fsuppcolem 8596 | Lemma for fsuppco 8597. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) & ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) ⇒ ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) | ||
Theorem | fsuppco 8597 | The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) | ||
Theorem | fsuppco2 8598 | The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 8599 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) | ||
Theorem | fsuppcor 8599 | The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) | ||
Theorem | mapfienlem1 8600* | Lemma 1 for mapfien 8603. (Contributed by AV, 3-Jul-2019.) |
⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑𝑚 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐷 ∈ V) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |