HomeHome Metamath Proof Explorer
Theorem List (p. 86 of 473)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29863)
  Hilbert Space Explorer  Hilbert Space Explorer
(29864-31386)
  Users' Mathboxes  Users' Mathboxes
(31387-47259)
 

Theorem List for Metamath Proof Explorer - 8501-8600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremoaword2 8501 An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. Lemma 3.3 of [Schloeder] p. 7. (Contributed by NM, 7-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐴 βŠ† (𝐡 +o 𝐴))
 
Theoremoawordeulem 8502* Lemma for oawordex 8505. (Contributed by NM, 11-Dec-2004.)
𝐴 ∈ On    &   π΅ ∈ On    &   π‘† = {𝑦 ∈ On ∣ 𝐡 βŠ† (𝐴 +o 𝑦)}    β‡’   (𝐴 βŠ† 𝐡 β†’ βˆƒ!π‘₯ ∈ On (𝐴 +o π‘₯) = 𝐡)
 
Theoremoawordeu 8503* Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On) ∧ 𝐴 βŠ† 𝐡) β†’ βˆƒ!π‘₯ ∈ On (𝐴 +o π‘₯) = 𝐡)
 
Theoremoawordexr 8504* Existence theorem for weak ordering of ordinal sum. (Contributed by NM, 12-Dec-2004.)
((𝐴 ∈ On ∧ βˆƒπ‘₯ ∈ On (𝐴 +o π‘₯) = 𝐡) β†’ 𝐴 βŠ† 𝐡)
 
Theoremoawordex 8505* Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59 and its converse. See oawordeu 8503 for uniqueness. (Contributed by NM, 12-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 βŠ† 𝐡 ↔ βˆƒπ‘₯ ∈ On (𝐴 +o π‘₯) = 𝐡))
 
Theoremoaordex 8506* Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 ∈ 𝐡 ↔ βˆƒπ‘₯ ∈ On (βˆ… ∈ π‘₯ ∧ (𝐴 +o π‘₯) = 𝐡)))
 
Theoremoa00 8507 An ordinal sum is zero iff both of its arguments are zero. Lemma 3.10 of [Schloeder] p. 8. (Contributed by NM, 6-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((𝐴 +o 𝐡) = βˆ… ↔ (𝐴 = βˆ… ∧ 𝐡 = βˆ…)))
 
Theoremoalimcl 8508 The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. Lemma 3.4 of [Schloeder] p. 7. (Contributed by NM, 8-Dec-2004.)
((𝐴 ∈ On ∧ (𝐡 ∈ 𝐢 ∧ Lim 𝐡)) β†’ Lim (𝐴 +o 𝐡))
 
Theoremoaass 8509 Ordinal addition is associative. Theorem 25 of [Suppes] p. 211. Theorem 4.2 of [Schloeder] p. 11. (Contributed by NM, 10-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 +o 𝐡) +o 𝐢) = (𝐴 +o (𝐡 +o 𝐢)))
 
Theoremoarec 8510* Recursive definition of ordinal addition. Exercise 25 of [Enderton] p. 240. (Contributed by NM, 26-Dec-2004.) (Revised by Mario Carneiro, 30-May-2015.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 +o 𝐡) = (𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))))
 
Theoremoaf1o 8511* Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015.)
(𝐴 ∈ On β†’ (π‘₯ ∈ On ↦ (𝐴 +o π‘₯)):On–1-1-ontoβ†’(On βˆ– 𝐴))
 
Theoremoacomf1olem 8512* Lemma for oacomf1o 8513. (Contributed by Mario Carneiro, 30-May-2015.)
𝐹 = (π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯))    β‡’   ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐹:𝐴–1-1-ontoβ†’ran 𝐹 ∧ (ran 𝐹 ∩ 𝐡) = βˆ…))
 
Theoremoacomf1o 8513* Define a bijection from 𝐴 +o 𝐡 to 𝐡 +o 𝐴. Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom 9588). (Contributed by Mario Carneiro, 30-May-2015.)
𝐹 = ((π‘₯ ∈ 𝐴 ↦ (𝐡 +o π‘₯)) βˆͺ β—‘(π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))    β‡’   ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐹:(𝐴 +o 𝐡)–1-1-ontoβ†’(𝐡 +o 𝐴))
 
Theoremomordi 8514 Ordering property of ordinal multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63. Lemma 3.15 of [Schloeder] p. 9. (Contributed by NM, 14-Dec-2004.)
(((𝐡 ∈ On ∧ 𝐢 ∈ On) ∧ βˆ… ∈ 𝐢) β†’ (𝐴 ∈ 𝐡 β†’ (𝐢 Β·o 𝐴) ∈ (𝐢 Β·o 𝐡)))
 
Theoremomord2 8515 Ordering property of ordinal multiplication. (Contributed by NM, 25-Dec-2004.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) ∧ βˆ… ∈ 𝐢) β†’ (𝐴 ∈ 𝐡 ↔ (𝐢 Β·o 𝐴) ∈ (𝐢 Β·o 𝐡)))
 
Theoremomord 8516 Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. Theorem 3.16 of [Schloeder] p. 9. (Contributed by NM, 14-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 ∈ 𝐡 ∧ βˆ… ∈ 𝐢) ↔ (𝐢 Β·o 𝐴) ∈ (𝐢 Β·o 𝐡)))
 
Theoremomcan 8517 Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) ∧ βˆ… ∈ 𝐴) β†’ ((𝐴 Β·o 𝐡) = (𝐴 Β·o 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremomword 8518 Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) ∧ βˆ… ∈ 𝐢) β†’ (𝐴 βŠ† 𝐡 ↔ (𝐢 Β·o 𝐴) βŠ† (𝐢 Β·o 𝐡)))
 
Theoremomwordi 8519 Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ (𝐴 βŠ† 𝐡 β†’ (𝐢 Β·o 𝐴) βŠ† (𝐢 Β·o 𝐡)))
 
Theoremomwordri 8520 Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ (𝐴 βŠ† 𝐡 β†’ (𝐴 Β·o 𝐢) βŠ† (𝐡 Β·o 𝐢)))
 
Theoremomword1 8521 An ordinal is less than or equal to its product with another. Lemma 3.11 of [Schloeder] p. 8. (Contributed by NM, 21-Dec-2004.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On) ∧ βˆ… ∈ 𝐡) β†’ 𝐴 βŠ† (𝐴 Β·o 𝐡))
 
Theoremomword2 8522 An ordinal is less than or equal to its product with another. Lemma 3.12 of [Schloeder] p. 9. (Contributed by NM, 21-Dec-2004.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On) ∧ βˆ… ∈ 𝐡) β†’ 𝐴 βŠ† (𝐡 Β·o 𝐴))
 
Theoremom00 8523 The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((𝐴 Β·o 𝐡) = βˆ… ↔ (𝐴 = βˆ… ∨ 𝐡 = βˆ…)))
 
Theoremom00el 8524 The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (βˆ… ∈ (𝐴 Β·o 𝐡) ↔ (βˆ… ∈ 𝐴 ∧ βˆ… ∈ 𝐡)))
 
Theoremomordlim 8525* Ordering involving the product of a limit ordinal. Proposition 8.23 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.)
(((𝐴 ∈ On ∧ (𝐡 ∈ 𝐷 ∧ Lim 𝐡)) ∧ 𝐢 ∈ (𝐴 Β·o 𝐡)) β†’ βˆƒπ‘₯ ∈ 𝐡 𝐢 ∈ (𝐴 Β·o π‘₯))
 
Theoremomlimcl 8526 The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.)
(((𝐴 ∈ On ∧ (𝐡 ∈ 𝐢 ∧ Lim 𝐡)) ∧ βˆ… ∈ 𝐴) β†’ Lim (𝐴 Β·o 𝐡))
 
Theoremodi 8527 Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. Theorem 4.3 of [Schloeder] p. 12. (Contributed by NM, 26-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ (𝐴 Β·o (𝐡 +o 𝐢)) = ((𝐴 Β·o 𝐡) +o (𝐴 Β·o 𝐢)))
 
Theoremomass 8528 Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. Theorem 4.4 of [Schloeder] p. 13. (Contributed by NM, 28-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 Β·o 𝐡) Β·o 𝐢) = (𝐴 Β·o (𝐡 Β·o 𝐢)))
 
Theoremoneo 8529 If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 = (2o Β·o 𝐴)) β†’ Β¬ suc 𝐢 = (2o Β·o 𝐡))
 
Theoremomeulem1 8530* Lemma for omeu 8533: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐴 β‰  βˆ…) β†’ βˆƒπ‘₯ ∈ On βˆƒπ‘¦ ∈ 𝐴 ((𝐴 Β·o π‘₯) +o 𝑦) = 𝐡)
 
Theoremomeulem2 8531 Lemma for omeu 8533: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ On ∧ 𝐴 β‰  βˆ…) ∧ (𝐡 ∈ On ∧ 𝐢 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) β†’ ((𝐡 ∈ 𝐷 ∨ (𝐡 = 𝐷 ∧ 𝐢 ∈ 𝐸)) β†’ ((𝐴 Β·o 𝐡) +o 𝐢) ∈ ((𝐴 Β·o 𝐷) +o 𝐸)))
 
Theoremomopth2 8532 An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ On ∧ 𝐴 β‰  βˆ…) ∧ (𝐡 ∈ On ∧ 𝐢 ∈ 𝐴) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ 𝐴)) β†’ (((𝐴 Β·o 𝐡) +o 𝐢) = ((𝐴 Β·o 𝐷) +o 𝐸) ↔ (𝐡 = 𝐷 ∧ 𝐢 = 𝐸)))
 
Theoremomeu 8533* The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐴 β‰  βˆ…) β†’ βˆƒ!π‘§βˆƒπ‘₯ ∈ On βˆƒπ‘¦ ∈ 𝐴 (𝑧 = ⟨π‘₯, π‘¦βŸ© ∧ ((𝐴 Β·o π‘₯) +o 𝑦) = 𝐡))
 
Theoremoen0 8534 Ordinal exponentiation with a nonzero base is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On) ∧ βˆ… ∈ 𝐴) β†’ βˆ… ∈ (𝐴 ↑o 𝐡))
 
Theoremoeordi 8535 Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐡 ∈ On ∧ 𝐢 ∈ (On βˆ– 2o)) β†’ (𝐴 ∈ 𝐡 β†’ (𝐢 ↑o 𝐴) ∈ (𝐢 ↑o 𝐡)))
 
Theoremoeord 8536 Ordering property of ordinal exponentiation. Corollary 8.34 of [TakeutiZaring] p. 68 and its converse. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ (On βˆ– 2o)) β†’ (𝐴 ∈ 𝐡 ↔ (𝐢 ↑o 𝐴) ∈ (𝐢 ↑o 𝐡)))
 
Theoremoecan 8537 Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ (On βˆ– 2o) ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 ↑o 𝐡) = (𝐴 ↑o 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremoeword 8538 Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ (On βˆ– 2o)) β†’ (𝐴 βŠ† 𝐡 ↔ (𝐢 ↑o 𝐴) βŠ† (𝐢 ↑o 𝐡)))
 
Theoremoewordi 8539 Weak ordering property of ordinal exponentiation. Lemma 3.19 of [Schloeder] p. 10. (Contributed by NM, 6-Jan-2005.)
(((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) ∧ βˆ… ∈ 𝐢) β†’ (𝐴 βŠ† 𝐡 β†’ (𝐢 ↑o 𝐴) βŠ† (𝐢 ↑o 𝐡)))
 
Theoremoewordri 8540 Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
((𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ (𝐴 ∈ 𝐡 β†’ (𝐴 ↑o 𝐢) βŠ† (𝐡 ↑o 𝐢)))
 
Theoremoeworde 8541 Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. Lemma 3.20 of [Schloeder] p. 10. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
((𝐴 ∈ (On βˆ– 2o) ∧ 𝐡 ∈ On) β†’ 𝐡 βŠ† (𝐴 ↑o 𝐡))
 
Theoremoeordsuc 8542 Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.)
((𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ (𝐴 ∈ 𝐡 β†’ (𝐴 ↑o suc 𝐢) ∈ (𝐡 ↑o suc 𝐢)))
 
Theoremoelim2 8543* Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of [Mendelson] p. 250. (Contributed by NM, 6-Jan-2005.)
((𝐴 ∈ On ∧ (𝐡 ∈ 𝐢 ∧ Lim 𝐡)) β†’ (𝐴 ↑o 𝐡) = βˆͺ π‘₯ ∈ (𝐡 βˆ– 1o)(𝐴 ↑o π‘₯))
 
Theoremoeoalem 8544 Lemma for oeoa 8545. (Contributed by Eric Schmidt, 26-May-2009.)
𝐴 ∈ On    &   βˆ… ∈ 𝐴    &   π΅ ∈ On    β‡’   (𝐢 ∈ On β†’ (𝐴 ↑o (𝐡 +o 𝐢)) = ((𝐴 ↑o 𝐡) Β·o (𝐴 ↑o 𝐢)))
 
Theoremoeoa 8545 Sum of exponents law for ordinal exponentiation. Theorem 8R of [Enderton] p. 238. Also Proposition 8.41 of [TakeutiZaring] p. 69. Theorem 4.7 of [Schloeder] p. 14. (Contributed by Eric Schmidt, 26-May-2009.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ (𝐴 ↑o (𝐡 +o 𝐢)) = ((𝐴 ↑o 𝐡) Β·o (𝐴 ↑o 𝐢)))
 
Theoremoeoelem 8546 Lemma for oeoe 8547. (Contributed by Eric Schmidt, 26-May-2009.)
𝐴 ∈ On    &   βˆ… ∈ 𝐴    β‡’   ((𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 ↑o 𝐡) ↑o 𝐢) = (𝐴 ↑o (𝐡 Β·o 𝐢)))
 
Theoremoeoe 8547 Product of exponents law for ordinal exponentiation. Theorem 8S of [Enderton] p. 238. Also Proposition 8.42 of [TakeutiZaring] p. 70. (Contributed by Eric Schmidt, 26-May-2009.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 ↑o 𝐡) ↑o 𝐢) = (𝐴 ↑o (𝐡 Β·o 𝐢)))
 
Theoremoelimcl 8548 The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
((𝐴 ∈ (On βˆ– 2o) ∧ (𝐡 ∈ 𝐢 ∧ Lim 𝐡)) β†’ Lim (𝐴 ↑o 𝐡))
 
Theoremoeeulem 8549* Lemma for oeeu 8551. (Contributed by Mario Carneiro, 28-Feb-2013.)
𝑋 = βˆͺ ∩ {π‘₯ ∈ On ∣ 𝐡 ∈ (𝐴 ↑o π‘₯)}    β‡’   ((𝐴 ∈ (On βˆ– 2o) ∧ 𝐡 ∈ (On βˆ– 1o)) β†’ (𝑋 ∈ On ∧ (𝐴 ↑o 𝑋) βŠ† 𝐡 ∧ 𝐡 ∈ (𝐴 ↑o suc 𝑋)))
 
Theoremoeeui 8550* The division algorithm for ordinal exponentiation. (This version of oeeu 8551 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 8533.) (Contributed by Mario Carneiro, 25-May-2015.)
𝑋 = βˆͺ ∩ {π‘₯ ∈ On ∣ 𝐡 ∈ (𝐴 ↑o π‘₯)}    &   π‘ƒ = (β„©π‘€βˆƒπ‘¦ ∈ On βˆƒπ‘§ ∈ (𝐴 ↑o 𝑋)(𝑀 = βŸ¨π‘¦, π‘§βŸ© ∧ (((𝐴 ↑o 𝑋) Β·o 𝑦) +o 𝑧) = 𝐡))    &   π‘Œ = (1st β€˜π‘ƒ)    &   π‘ = (2nd β€˜π‘ƒ)    β‡’   ((𝐴 ∈ (On βˆ– 2o) ∧ 𝐡 ∈ (On βˆ– 1o)) β†’ (((𝐢 ∈ On ∧ 𝐷 ∈ (𝐴 βˆ– 1o) ∧ 𝐸 ∈ (𝐴 ↑o 𝐢)) ∧ (((𝐴 ↑o 𝐢) Β·o 𝐷) +o 𝐸) = 𝐡) ↔ (𝐢 = 𝑋 ∧ 𝐷 = π‘Œ ∧ 𝐸 = 𝑍)))
 
Theoremoeeu 8551* The division algorithm for ordinal exponentiation. (Contributed by Mario Carneiro, 25-May-2015.)
((𝐴 ∈ (On βˆ– 2o) ∧ 𝐡 ∈ (On βˆ– 1o)) β†’ βˆƒ!π‘€βˆƒπ‘₯ ∈ On βˆƒπ‘¦ ∈ (𝐴 βˆ– 1o)βˆƒπ‘§ ∈ (𝐴 ↑o π‘₯)(𝑀 = ⟨π‘₯, 𝑦, π‘§βŸ© ∧ (((𝐴 ↑o π‘₯) Β·o 𝑦) +o 𝑧) = 𝐡))
 
2.4.24  Natural number arithmetic
 
Theoremnna0 8552 Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
(𝐴 ∈ Ο‰ β†’ (𝐴 +o βˆ…) = 𝐴)
 
Theoremnnm0 8553 Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.)
(𝐴 ∈ Ο‰ β†’ (𝐴 Β·o βˆ…) = βˆ…)
 
Theoremnnasuc 8554 Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 +o suc 𝐡) = suc (𝐴 +o 𝐡))
 
Theoremnnmsuc 8555 Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 Β·o suc 𝐡) = ((𝐴 Β·o 𝐡) +o 𝐴))
 
Theoremnnesuc 8556 Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 ↑o suc 𝐡) = ((𝐴 ↑o 𝐡) Β·o 𝐴))
 
Theoremnna0r 8557 Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8485) so that we can avoid ax-rep 5243, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
(𝐴 ∈ Ο‰ β†’ (βˆ… +o 𝐴) = 𝐴)
 
Theoremnnm0r 8558 Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(𝐴 ∈ Ο‰ β†’ (βˆ… Β·o 𝐴) = βˆ…)
 
Theoremnnacl 8559 Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 +o 𝐡) ∈ Ο‰)
 
Theoremnnmcl 8560 Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 Β·o 𝐡) ∈ Ο‰)
 
Theoremnnecl 8561 Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. Theorem 2.20 of [Schloeder] p. 6. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 ↑o 𝐡) ∈ Ο‰)
 
Theoremnnacli 8562 Ο‰ is closed under addition. Inference form of nnacl 8559. (Contributed by Scott Fenton, 20-Apr-2012.)
𝐴 ∈ Ο‰    &   π΅ ∈ Ο‰    β‡’   (𝐴 +o 𝐡) ∈ Ο‰
 
Theoremnnmcli 8563 Ο‰ is closed under multiplication. Inference form of nnmcl 8560. (Contributed by Scott Fenton, 20-Apr-2012.)
𝐴 ∈ Ο‰    &   π΅ ∈ Ο‰    β‡’   (𝐴 Β·o 𝐡) ∈ Ο‰
 
Theoremnnarcl 8564 Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((𝐴 +o 𝐡) ∈ Ο‰ ↔ (𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰)))
 
Theoremnnacom 8565 Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 +o 𝐡) = (𝐡 +o 𝐴))
 
Theoremnnaordi 8566 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 ∈ 𝐡 β†’ (𝐢 +o 𝐴) ∈ (𝐢 +o 𝐡)))
 
Theoremnnaord 8567 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 ∈ 𝐡 ↔ (𝐢 +o 𝐴) ∈ (𝐢 +o 𝐡)))
 
Theoremnnaordr 8568 Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 ∈ 𝐡 ↔ (𝐴 +o 𝐢) ∈ (𝐡 +o 𝐢)))
 
Theoremnnawordi 8569 Adding to both sides of an inequality in Ο‰. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 βŠ† 𝐡 β†’ (𝐴 +o 𝐢) βŠ† (𝐡 +o 𝐢)))
 
Theoremnnaass 8570 Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ ((𝐴 +o 𝐡) +o 𝐢) = (𝐴 +o (𝐡 +o 𝐢)))
 
Theoremnndi 8571 Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 Β·o (𝐡 +o 𝐢)) = ((𝐴 Β·o 𝐡) +o (𝐴 Β·o 𝐢)))
 
Theoremnnmass 8572 Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ ((𝐴 Β·o 𝐡) Β·o 𝐢) = (𝐴 Β·o (𝐡 Β·o 𝐢)))
 
Theoremnnmsucr 8573 Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (suc 𝐴 Β·o 𝐡) = ((𝐴 Β·o 𝐡) +o 𝐡))
 
Theoremnnmcom 8574 Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 Β·o 𝐡) = (𝐡 Β·o 𝐴))
 
Theoremnnaword 8575 Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 βŠ† 𝐡 ↔ (𝐢 +o 𝐴) βŠ† (𝐢 +o 𝐡)))
 
Theoremnnacan 8576 Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ ((𝐴 +o 𝐡) = (𝐴 +o 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremnnaword1 8577 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ 𝐴 βŠ† (𝐴 +o 𝐡))
 
Theoremnnaword2 8578 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ 𝐴 βŠ† (𝐡 +o 𝐴))
 
Theoremnnmordi 8579 Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) ∧ βˆ… ∈ 𝐢) β†’ (𝐴 ∈ 𝐡 β†’ (𝐢 Β·o 𝐴) ∈ (𝐢 Β·o 𝐡)))
 
Theoremnnmord 8580 Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ ((𝐴 ∈ 𝐡 ∧ βˆ… ∈ 𝐢) ↔ (𝐢 Β·o 𝐴) ∈ (𝐢 Β·o 𝐡)))
 
Theoremnnmword 8581 Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
(((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) ∧ βˆ… ∈ 𝐢) β†’ (𝐴 βŠ† 𝐡 ↔ (𝐢 Β·o 𝐴) βŠ† (𝐢 Β·o 𝐡)))
 
Theoremnnmcan 8582 Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) ∧ βˆ… ∈ 𝐴) β†’ ((𝐴 Β·o 𝐡) = (𝐴 Β·o 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremnnmwordi 8583 Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 βŠ† 𝐡 β†’ (𝐢 Β·o 𝐴) βŠ† (𝐢 Β·o 𝐡)))
 
Theoremnnmwordri 8584 Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰ ∧ 𝐢 ∈ Ο‰) β†’ (𝐴 βŠ† 𝐡 β†’ (𝐴 Β·o 𝐢) βŠ† (𝐡 Β·o 𝐢)))
 
Theoremnnawordex 8585* Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 βŠ† 𝐡 ↔ βˆƒπ‘₯ ∈ Ο‰ (𝐴 +o π‘₯) = 𝐡))
 
Theoremnnaordex 8586* Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (𝐴 ∈ 𝐡 ↔ βˆƒπ‘₯ ∈ Ο‰ (βˆ… ∈ π‘₯ ∧ (𝐴 +o π‘₯) = 𝐡)))
 
Theorem1onn 8587 The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7673, see 1onnALT 8588. Lemma 2.2 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) Avoid ax-un 7673. (Revised by BTernaryTau, 1-Dec-2024.)
1o ∈ Ο‰
 
Theorem1onnALT 8588 Shorter proof of 1onn 8587 using Peano's postulates that depends on ax-un 7673. (Contributed by NM, 29-Oct-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
1o ∈ Ο‰
 
Theorem2onn 8589 The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7673, see 2onnALT 8590. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7673. (Revised by BTernaryTau, 1-Dec-2024.)
2o ∈ Ο‰
 
Theorem2onnALT 8590 Shorter proof of 2onn 8589 using Peano's postulates that depends on ax-un 7673. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
2o ∈ Ο‰
 
Theorem3onn 8591 The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
3o ∈ Ο‰
 
Theorem4onn 8592 The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
4o ∈ Ο‰
 
Theorem1one2o 8593 Ordinal one is not ordinal two. Analogous to 1ne2 12362. (Contributed by AV, 17-Oct-2023.)
1o β‰  2o
 
Theoremoaabslem 8594 Lemma for oaabs 8595. (Contributed by NM, 9-Dec-2004.)
((Ο‰ ∈ On ∧ 𝐴 ∈ Ο‰) β†’ (𝐴 +o Ο‰) = Ο‰)
 
Theoremoaabs 8595 Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ On) ∧ Ο‰ βŠ† 𝐡) β†’ (𝐴 +o 𝐡) = 𝐡)
 
Theoremoaabs2 8596 The absorption law oaabs 8595 is also a property of higher powers of Ο‰. (Contributed by Mario Carneiro, 29-May-2015.)
(((𝐴 ∈ (Ο‰ ↑o 𝐢) ∧ 𝐡 ∈ On) ∧ (Ο‰ ↑o 𝐢) βŠ† 𝐡) β†’ (𝐴 +o 𝐡) = 𝐡)
 
Theoremomabslem 8597 Lemma for omabs 8598. (Contributed by Mario Carneiro, 30-May-2015.)
((Ο‰ ∈ On ∧ 𝐴 ∈ Ο‰ ∧ βˆ… ∈ 𝐴) β†’ (𝐴 Β·o Ο‰) = Ο‰)
 
Theoremomabs 8598 Ordinal multiplication is also absorbed by powers of Ο‰. (Contributed by Mario Carneiro, 30-May-2015.)
(((𝐴 ∈ Ο‰ ∧ βˆ… ∈ 𝐴) ∧ (𝐡 ∈ On ∧ βˆ… ∈ 𝐡)) β†’ (𝐴 Β·o (Ο‰ ↑o 𝐡)) = (Ο‰ ↑o 𝐡))
 
Theoremnnm1 8599 Multiply an element of Ο‰ by 1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ Ο‰ β†’ (𝐴 Β·o 1o) = 𝐴)
 
Theoremnnm2 8600 Multiply an element of Ο‰ by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ Ο‰ β†’ (𝐴 Β·o 2o) = (𝐴 +o 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47259
  Copyright terms: Public domain < Previous  Next >