![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endisj | Structured version Visualization version GIF version |
Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
Ref | Expression |
---|---|
endisj.1 | ⊢ 𝐴 ∈ V |
endisj.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 0ex 5269 | . . . 4 ⊢ ∅ ∈ V | |
3 | 1, 2 | xpsnen 9006 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | 1oex 8427 | . . . 4 ⊢ 1o ∈ V | |
6 | 4, 5 | xpsnen 9006 | . . 3 ⊢ (𝐵 × {1o}) ≈ 𝐵 |
7 | 3, 6 | pm3.2i 472 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) |
8 | xp01disj 8442 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅ | |
9 | p0ex 5344 | . . . 4 ⊢ {∅} ∈ V | |
10 | 1, 9 | xpex 7692 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
11 | snex 5393 | . . . 4 ⊢ {1o} ∈ V | |
12 | 4, 11 | xpex 7692 | . . 3 ⊢ (𝐵 × {1o}) ∈ V |
13 | breq1 5113 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
14 | breq1 5113 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1o}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵)) | |
15 | 13, 14 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵))) |
16 | ineq12 4172 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o}))) | |
17 | 16 | eqeq1d 2739 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)) |
18 | 15, 17 | anbi12d 632 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))) |
19 | 10, 12, 18 | spc2ev 3569 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
20 | 7, 8, 19 | mp2an 691 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3448 ∩ cin 3914 ∅c0 4287 {csn 4591 class class class wbr 5110 × cxp 5636 1oc1o 8410 ≈ cen 8887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6328 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-1o 8417 df-en 8891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |