| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endisj | Structured version Visualization version GIF version | ||
| Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| endisj.1 | ⊢ 𝐴 ∈ V |
| endisj.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | xpsnen 9067 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
| 4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 1oex 8488 | . . . 4 ⊢ 1o ∈ V | |
| 6 | 4, 5 | xpsnen 9067 | . . 3 ⊢ (𝐵 × {1o}) ≈ 𝐵 |
| 7 | 3, 6 | pm3.2i 470 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) |
| 8 | xp01disj 8501 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅ | |
| 9 | p0ex 5354 | . . . 4 ⊢ {∅} ∈ V | |
| 10 | 1, 9 | xpex 7745 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
| 11 | snex 5406 | . . . 4 ⊢ {1o} ∈ V | |
| 12 | 4, 11 | xpex 7745 | . . 3 ⊢ (𝐵 × {1o}) ∈ V |
| 13 | breq1 5122 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
| 14 | breq1 5122 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1o}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵)) | |
| 15 | 13, 14 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵))) |
| 16 | ineq12 4190 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o}))) | |
| 17 | 16 | eqeq1d 2737 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)) |
| 18 | 15, 17 | anbi12d 632 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))) |
| 19 | 10, 12, 18 | spc2ev 3586 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 20 | 7, 8, 19 | mp2an 692 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ∅c0 4308 {csn 4601 class class class wbr 5119 × cxp 5652 1oc1o 8471 ≈ cen 8954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-suc 6358 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-1o 8478 df-en 8958 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |