![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endisj | Structured version Visualization version GIF version |
Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
Ref | Expression |
---|---|
endisj.1 | ⊢ 𝐴 ∈ V |
endisj.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 0ex 5306 | . . . 4 ⊢ ∅ ∈ V | |
3 | 1, 2 | xpsnen 9051 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | 1oex 8472 | . . . 4 ⊢ 1o ∈ V | |
6 | 4, 5 | xpsnen 9051 | . . 3 ⊢ (𝐵 × {1o}) ≈ 𝐵 |
7 | 3, 6 | pm3.2i 471 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) |
8 | xp01disj 8487 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅ | |
9 | p0ex 5381 | . . . 4 ⊢ {∅} ∈ V | |
10 | 1, 9 | xpex 7736 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
11 | snex 5430 | . . . 4 ⊢ {1o} ∈ V | |
12 | 4, 11 | xpex 7736 | . . 3 ⊢ (𝐵 × {1o}) ∈ V |
13 | breq1 5150 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
14 | breq1 5150 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1o}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵)) | |
15 | 13, 14 | bi2anan9 637 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵))) |
16 | ineq12 4206 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o}))) | |
17 | 16 | eqeq1d 2734 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)) |
18 | 15, 17 | anbi12d 631 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))) |
19 | 10, 12, 18 | spc2ev 3597 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
20 | 7, 8, 19 | mp2an 690 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 ∅c0 4321 {csn 4627 class class class wbr 5147 × cxp 5673 1oc1o 8455 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-suc 6367 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-1o 8462 df-en 8936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |