MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  endisj Structured version   Visualization version   GIF version

Theorem endisj 9032
Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1 𝐴 ∈ V
endisj.2 𝐵 ∈ V
Assertion
Ref Expression
endisj 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4 𝐴 ∈ V
2 0ex 5265 . . . 4 ∅ ∈ V
31, 2xpsnen 9029 . . 3 (𝐴 × {∅}) ≈ 𝐴
4 endisj.2 . . . 4 𝐵 ∈ V
5 1oex 8447 . . . 4 1o ∈ V
64, 5xpsnen 9029 . . 3 (𝐵 × {1o}) ≈ 𝐵
73, 6pm3.2i 470 . 2 ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵)
8 xp01disj 8458 . 2 ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅
9 p0ex 5342 . . . 4 {∅} ∈ V
101, 9xpex 7732 . . 3 (𝐴 × {∅}) ∈ V
11 snex 5394 . . . 4 {1o} ∈ V
124, 11xpex 7732 . . 3 (𝐵 × {1o}) ∈ V
13 breq1 5113 . . . . 5 (𝑥 = (𝐴 × {∅}) → (𝑥𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴))
14 breq1 5113 . . . . 5 (𝑦 = (𝐵 × {1o}) → (𝑦𝐵 ↔ (𝐵 × {1o}) ≈ 𝐵))
1513, 14bi2anan9 638 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥𝐴𝑦𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵)))
16 ineq12 4181 . . . . 5 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (𝑥𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1o})))
1716eqeq1d 2732 . . . 4 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → ((𝑥𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅))
1815, 17anbi12d 632 . . 3 ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1o})) → (((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅)))
1910, 12, 18spc2ev 3576 . 2 ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1o}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1o})) = ∅) → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅))
207, 8, 19mp2an 692 1 𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cin 3916  c0 4299  {csn 4592   class class class wbr 5110   × cxp 5639  1oc1o 8430  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-suc 6341  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-1o 8437  df-en 8922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator