| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpindir | Structured version Visualization version GIF version | ||
| Description: Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
| Ref | Expression |
|---|---|
| xpindir | ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxp 5770 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) | |
| 2 | inidm 4174 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 3 | 2 | xpeq2i 5641 | . 2 ⊢ ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) × 𝐶) |
| 4 | 1, 3 | eqtr2i 2755 | 1 ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: resres 5940 resindi 5943 imainrect 6128 resdmres 6179 txhaus 23562 ustund 24137 |
| Copyright terms: Public domain | W3C validator |