Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpindir | Structured version Visualization version GIF version |
Description: Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
Ref | Expression |
---|---|
xpindir | ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxp 5740 | . 2 ⊢ ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) = ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) | |
2 | inidm 4158 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
3 | 2 | xpeq2i 5617 | . 2 ⊢ ((𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) × 𝐶) |
4 | 1, 3 | eqtr2i 2769 | 1 ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∩ cin 3891 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-opab 5142 df-xp 5596 df-rel 5597 |
This theorem is referenced by: resres 5903 resindi 5906 imainrect 6083 resdmres 6134 txhaus 22796 ustund 23371 |
Copyright terms: Public domain | W3C validator |