MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpindir Structured version   Visualization version   GIF version

Theorem xpindir 5834
Description: Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindir ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶))

Proof of Theorem xpindir
StepHypRef Expression
1 inxp 5832 . 2 ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) = ((𝐴𝐵) × (𝐶𝐶))
2 inidm 4218 . . 3 (𝐶𝐶) = 𝐶
32xpeq2i 5703 . 2 ((𝐴𝐵) × (𝐶𝐶)) = ((𝐴𝐵) × 𝐶)
41, 3eqtr2i 2761 1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cin 3947   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682  df-rel 5683
This theorem is referenced by:  resres  5994  resindi  5997  imainrect  6180  resdmres  6231  txhaus  23150  ustund  23725
  Copyright terms: Public domain W3C validator