| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrnres5 | Structured version Visualization version GIF version | ||
| Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| disjxrnres5 | ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres2 38388 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
| 2 | 1 | disjeqi 38720 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) |
| 3 | xrnrel 38358 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 4 | disjres 38729 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) → ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅))) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
| 6 | 2, 5 | bitr3i 277 | 1 ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∀wral 3046 ∩ cin 3921 ∅c0 4304 ↾ cres 5648 Rel wrel 5651 [cec 8680 ⋉ cxrn 38165 Disj wdisjALTV 38200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rmo 3357 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ec 8684 df-xrn 38356 df-coss 38396 df-cnvrefrel 38512 df-funALTV 38667 df-disjALTV 38690 |
| This theorem is referenced by: disjsuc 38744 |
| Copyright terms: Public domain | W3C validator |