Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxrnres5 Structured version   Visualization version   GIF version

Theorem disjxrnres5 38732
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjxrnres5 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem disjxrnres5
StepHypRef Expression
1 xrnres2 38388 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21disjeqi 38720 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆𝐴)))
3 xrnrel 38358 . . 3 Rel (𝑅𝑆)
4 disjres 38729 . . 3 (Rel (𝑅𝑆) → ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅)))
53, 4ax-mp 5 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
62, 5bitr3i 277 1 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wral 3046  cin 3921  c0 4304  cres 5648  Rel wrel 5651  [cec 8680  cxrn 38165   Disj wdisjALTV 38200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rmo 3357  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ec 8684  df-xrn 38356  df-coss 38396  df-cnvrefrel 38512  df-funALTV 38667  df-disjALTV 38690
This theorem is referenced by:  disjsuc  38744
  Copyright terms: Public domain W3C validator