Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxrnres5 Structured version   Visualization version   GIF version

Theorem disjxrnres5 36961
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjxrnres5 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem disjxrnres5
StepHypRef Expression
1 xrnres2 36617 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21disjeqi 36949 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆𝐴)))
3 xrnrel 36587 . . 3 Rel (𝑅𝑆)
4 disjres 36958 . . 3 (Rel (𝑅𝑆) → ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅)))
53, 4ax-mp 5 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
62, 5bitr3i 277 1 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845   = wceq 1539  wral 3061  cin 3891  c0 4262  cres 5602  Rel wrel 5605  [cec 8527  cxrn 36380   Disj wdisjALTV 36415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rmo 3331  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-xrn 36585  df-coss 36625  df-cnvrefrel 36741  df-funALTV 36896  df-disjALTV 36919
This theorem is referenced by:  disjsuc  36973
  Copyright terms: Public domain W3C validator