Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrnres5 | Structured version Visualization version GIF version |
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjxrnres5 | ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres2 36617 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
2 | 1 | disjeqi 36949 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) |
3 | xrnrel 36587 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
4 | disjres 36958 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) → ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
6 | 2, 5 | bitr3i 277 | 1 ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1539 ∀wral 3061 ∩ cin 3891 ∅c0 4262 ↾ cres 5602 Rel wrel 5605 [cec 8527 ⋉ cxrn 36380 Disj wdisjALTV 36415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rmo 3331 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-xrn 36585 df-coss 36625 df-cnvrefrel 36741 df-funALTV 36896 df-disjALTV 36919 |
This theorem is referenced by: disjsuc 36973 |
Copyright terms: Public domain | W3C validator |