Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxrnres5 Structured version   Visualization version   GIF version

Theorem disjxrnres5 38689
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjxrnres5 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem disjxrnres5
StepHypRef Expression
1 xrnres2 38345 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21disjeqi 38677 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆𝐴)))
3 xrnrel 38315 . . 3 Rel (𝑅𝑆)
4 disjres 38686 . . 3 (Rel (𝑅𝑆) → ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅)))
53, 4ax-mp 5 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
62, 5bitr3i 277 1 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1539  wral 3050  cin 3932  c0 4315  cres 5669  Rel wrel 5672  [cec 8726  cxrn 38122   Disj wdisjALTV 38157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rmo 3364  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8730  df-xrn 38313  df-coss 38353  df-cnvrefrel 38469  df-funALTV 38624  df-disjALTV 38647
This theorem is referenced by:  disjsuc  38701
  Copyright terms: Public domain W3C validator