Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxrnres5 Structured version   Visualization version   GIF version

Theorem disjxrnres5 38739
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjxrnres5 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem disjxrnres5
StepHypRef Expression
1 xrnres2 38389 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21disjeqi 38727 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆𝐴)))
3 xrnrel 38355 . . 3 Rel (𝑅𝑆)
4 disjres 38736 . . 3 (Rel (𝑅𝑆) → ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅)))
53, 4ax-mp 5 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
62, 5bitr3i 277 1 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wral 3044  cin 3913  c0 4296  cres 5640  Rel wrel 5643  [cec 8669  cxrn 38168   Disj wdisjALTV 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-xrn 38353  df-coss 38402  df-cnvrefrel 38518  df-funALTV 38674  df-disjALTV 38697
This theorem is referenced by:  disjsuc  38751
  Copyright terms: Public domain W3C validator