| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrnres5 | Structured version Visualization version GIF version | ||
| Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| disjxrnres5 | ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres2 38456 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
| 2 | 1 | disjeqi 38839 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) |
| 3 | xrnrel 38412 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 4 | disjres 38848 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) → ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅))) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
| 6 | 2, 5 | bitr3i 277 | 1 ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∀wral 3047 ∩ cin 3896 ∅c0 4282 ↾ cres 5621 Rel wrel 5624 [cec 8626 ⋉ cxrn 38220 Disj wdisjALTV 38262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-xrn 38410 df-coss 38519 df-cnvrefrel 38625 df-funALTV 38786 df-disjALTV 38809 |
| This theorem is referenced by: disjsuc 38863 |
| Copyright terms: Public domain | W3C validator |