Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxrnres5 Structured version   Visualization version   GIF version

Theorem disjxrnres5 38741
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.)
Assertion
Ref Expression
disjxrnres5 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣

Proof of Theorem disjxrnres5
StepHypRef Expression
1 xrnres2 38397 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
21disjeqi 38729 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆𝐴)))
3 xrnrel 38367 . . 3 Rel (𝑅𝑆)
4 disjres 38738 . . 3 (Rel (𝑅𝑆) → ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅)))
53, 4ax-mp 5 . 2 ( Disj ((𝑅𝑆) ↾ 𝐴) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
62, 5bitr3i 277 1 ( Disj (𝑅 ⋉ (𝑆𝐴)) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅𝑆) ∩ [𝑣](𝑅𝑆)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1538  wral 3060  cin 3963  c0 4340  cres 5692  Rel wrel 5695  [cec 8748  cxrn 38173   Disj wdisjALTV 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rmo 3379  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-ec 8752  df-xrn 38365  df-coss 38405  df-cnvrefrel 38521  df-funALTV 38676  df-disjALTV 38699
This theorem is referenced by:  disjsuc  38753
  Copyright terms: Public domain W3C validator