![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrnres5 | Structured version Visualization version GIF version |
Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
Ref | Expression |
---|---|
disjxrnres5 | ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres2 37763 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
2 | 1 | disjeqi 38095 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) |
3 | xrnrel 37733 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
4 | disjres 38104 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) → ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ( Disj ((𝑅 ⋉ 𝑆) ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
6 | 2, 5 | bitr3i 277 | 1 ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1533 ∀wral 3053 ∩ cin 3939 ∅c0 4314 ↾ cres 5668 Rel wrel 5671 [cec 8697 ⋉ cxrn 37532 Disj wdisjALTV 37567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rmo 3368 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ec 8701 df-xrn 37731 df-coss 37771 df-cnvrefrel 37887 df-funALTV 38042 df-disjALTV 38065 |
This theorem is referenced by: disjsuc 38119 |
Copyright terms: Public domain | W3C validator |