| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrsp1 | Structured version Visualization version GIF version | ||
| Description: The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| Ref | Expression |
|---|---|
| xrsp1 | ⊢ +∞ = (1.‘ℝ*𝑠) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsex 21350 | . . 3 ⊢ ℝ*𝑠 ∈ V | |
| 2 | xrsbas 21351 | . . . 4 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 3 | eqid 2736 | . . . 4 ⊢ (lub‘ℝ*𝑠) = (lub‘ℝ*𝑠) | |
| 4 | eqid 2736 | . . . 4 ⊢ (1.‘ℝ*𝑠) = (1.‘ℝ*𝑠) | |
| 5 | 2, 3, 4 | p1val 18443 | . . 3 ⊢ (ℝ*𝑠 ∈ V → (1.‘ℝ*𝑠) = ((lub‘ℝ*𝑠)‘ℝ*)) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (1.‘ℝ*𝑠) = ((lub‘ℝ*𝑠)‘ℝ*) |
| 7 | ssid 3986 | . . 3 ⊢ ℝ* ⊆ ℝ* | |
| 8 | xrslt 33004 | . . . 4 ⊢ < = (lt‘ℝ*𝑠) | |
| 9 | xrstos 33007 | . . . . 5 ⊢ ℝ*𝑠 ∈ Toset | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (ℝ* ⊆ ℝ* → ℝ*𝑠 ∈ Toset) |
| 11 | id 22 | . . . 4 ⊢ (ℝ* ⊆ ℝ* → ℝ* ⊆ ℝ*) | |
| 12 | 2, 8, 10, 11 | toslub 32958 | . . 3 ⊢ (ℝ* ⊆ ℝ* → ((lub‘ℝ*𝑠)‘ℝ*) = sup(ℝ*, ℝ*, < )) |
| 13 | 7, 12 | ax-mp 5 | . 2 ⊢ ((lub‘ℝ*𝑠)‘ℝ*) = sup(ℝ*, ℝ*, < ) |
| 14 | xrsup 13890 | . 2 ⊢ sup(ℝ*, ℝ*, < ) = +∞ | |
| 15 | 6, 13, 14 | 3eqtrri 2764 | 1 ⊢ +∞ = (1.‘ℝ*𝑠) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ‘cfv 6536 supcsup 9457 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 ℝ*𝑠cxrs 17519 lubclub 18326 Tosetctos 18431 1.cp1 18439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-tset 17295 df-ple 17296 df-ds 17298 df-xrs 17521 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-toset 18432 df-p1 18441 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |