![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnarchi | Structured version Visualization version GIF version |
Description: The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
Ref | Expression |
---|---|
xrnarchi | ⊢ ¬ ℝ*𝑠 ∈ Archi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 10499 | . . 3 ⊢ 1 ∈ ℝ* | |
2 | pnfxr 10493 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | 1rp 12207 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | pnfinf 30511 | . . . 4 ⊢ (1 ∈ ℝ+ → 1(⋘‘ℝ*𝑠)+∞) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1(⋘‘ℝ*𝑠)+∞ |
6 | breq1 4929 | . . . 4 ⊢ (𝑥 = 1 → (𝑥(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)𝑦)) | |
7 | breq2 4930 | . . . 4 ⊢ (𝑦 = +∞ → (1(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)+∞)) | |
8 | 6, 7 | rspc2ev 3545 | . . 3 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1(⋘‘ℝ*𝑠)+∞) → ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦) |
9 | 1, 2, 5, 8 | mp3an 1441 | . 2 ⊢ ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 |
10 | rexnal 3180 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
11 | dfrex2 3181 | . . . 4 ⊢ (∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
12 | 11 | rexbii 3189 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
13 | xrsex 20278 | . . . . 5 ⊢ ℝ*𝑠 ∈ V | |
14 | xrsbas 20279 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
15 | xrs0 30421 | . . . . . 6 ⊢ 0 = (0g‘ℝ*𝑠) | |
16 | eqid 2773 | . . . . . 6 ⊢ (⋘‘ℝ*𝑠) = (⋘‘ℝ*𝑠) | |
17 | 14, 15, 16 | isarchi 30510 | . . . . 5 ⊢ (ℝ*𝑠 ∈ V → (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦)) |
18 | 13, 17 | ax-mp 5 | . . . 4 ⊢ (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
19 | 18 | notbii 312 | . . 3 ⊢ (¬ ℝ*𝑠 ∈ Archi ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
20 | 10, 12, 19 | 3bitr4i 295 | . 2 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ℝ*𝑠 ∈ Archi) |
21 | 9, 20 | mpbi 222 | 1 ⊢ ¬ ℝ*𝑠 ∈ Archi |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∈ wcel 2051 ∀wral 3083 ∃wrex 3084 Vcvv 3410 class class class wbr 4926 ‘cfv 6186 0cc0 10334 1c1 10335 +∞cpnf 10470 ℝ*cxr 10472 ℝ+crp 12203 ℝ*𝑠cxrs 16628 ⋘cinftm 30504 Archicarchi 30505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-z 11793 df-dec 11911 df-uz 12058 df-rp 12204 df-xneg 12323 df-xadd 12324 df-xmul 12325 df-fz 12708 df-seq 13184 df-struct 16340 df-ndx 16341 df-slot 16342 df-base 16344 df-plusg 16433 df-mulr 16434 df-tset 16439 df-ple 16440 df-ds 16442 df-0g 16570 df-xrs 16630 df-plt 17439 df-minusg 17908 df-mulg 18025 df-inftm 30506 df-archi 30507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |