| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnarchi | Structured version Visualization version GIF version | ||
| Description: The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| xrnarchi | ⊢ ¬ ℝ*𝑠 ∈ Archi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11286 | . . 3 ⊢ 1 ∈ ℝ* | |
| 2 | pnfxr 11281 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | 1rp 13004 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | pnfinf 33099 | . . . 4 ⊢ (1 ∈ ℝ+ → 1(⋘‘ℝ*𝑠)+∞) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1(⋘‘ℝ*𝑠)+∞ |
| 6 | breq1 5119 | . . . 4 ⊢ (𝑥 = 1 → (𝑥(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)𝑦)) | |
| 7 | breq2 5120 | . . . 4 ⊢ (𝑦 = +∞ → (1(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)+∞)) | |
| 8 | 6, 7 | rspc2ev 3612 | . . 3 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1(⋘‘ℝ*𝑠)+∞) → ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 9 | 1, 2, 5, 8 | mp3an 1462 | . 2 ⊢ ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 |
| 10 | rexnal 3088 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
| 11 | dfrex2 3062 | . . . 4 ⊢ (∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
| 12 | 11 | rexbii 3082 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 13 | xrsex 21330 | . . . . 5 ⊢ ℝ*𝑠 ∈ V | |
| 14 | xrsbas 21331 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 15 | xrs0 32917 | . . . . . 6 ⊢ 0 = (0g‘ℝ*𝑠) | |
| 16 | eqid 2734 | . . . . . 6 ⊢ (⋘‘ℝ*𝑠) = (⋘‘ℝ*𝑠) | |
| 17 | 14, 15, 16 | isarchi 33098 | . . . . 5 ⊢ (ℝ*𝑠 ∈ V → (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦)) |
| 18 | 13, 17 | ax-mp 5 | . . . 4 ⊢ (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 19 | 18 | notbii 320 | . . 3 ⊢ (¬ ℝ*𝑠 ∈ Archi ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 20 | 10, 12, 19 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ℝ*𝑠 ∈ Archi) |
| 21 | 9, 20 | mpbi 230 | 1 ⊢ ¬ ℝ*𝑠 ∈ Archi |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3457 class class class wbr 5116 ‘cfv 6527 0cc0 11121 1c1 11122 +∞cpnf 11258 ℝ*cxr 11260 ℝ+crp 13000 ℝ*𝑠cxrs 17499 ⋘cinftm 33092 Archicarchi 33093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-fz 13514 df-seq 14009 df-struct 17151 df-slot 17186 df-ndx 17198 df-base 17214 df-plusg 17269 df-mulr 17270 df-tset 17275 df-ple 17276 df-ds 17278 df-0g 17440 df-xrs 17501 df-plt 18325 df-minusg 18905 df-mulg 19036 df-inftm 33094 df-archi 33095 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |