| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnarchi | Structured version Visualization version GIF version | ||
| Description: The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| xrnarchi | ⊢ ¬ ℝ*𝑠 ∈ Archi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11233 | . . 3 ⊢ 1 ∈ ℝ* | |
| 2 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | 1rp 12955 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | pnfinf 33137 | . . . 4 ⊢ (1 ∈ ℝ+ → 1(⋘‘ℝ*𝑠)+∞) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1(⋘‘ℝ*𝑠)+∞ |
| 6 | breq1 5110 | . . . 4 ⊢ (𝑥 = 1 → (𝑥(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)𝑦)) | |
| 7 | breq2 5111 | . . . 4 ⊢ (𝑦 = +∞ → (1(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)+∞)) | |
| 8 | 6, 7 | rspc2ev 3601 | . . 3 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1(⋘‘ℝ*𝑠)+∞) → ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 9 | 1, 2, 5, 8 | mp3an 1463 | . 2 ⊢ ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 |
| 10 | rexnal 3082 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
| 11 | dfrex2 3056 | . . . 4 ⊢ (∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
| 12 | 11 | rexbii 3076 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 13 | xrsex 21294 | . . . . 5 ⊢ ℝ*𝑠 ∈ V | |
| 14 | xrsbas 21295 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 15 | xrs0 32944 | . . . . . 6 ⊢ 0 = (0g‘ℝ*𝑠) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (⋘‘ℝ*𝑠) = (⋘‘ℝ*𝑠) | |
| 17 | 14, 15, 16 | isarchi 33136 | . . . . 5 ⊢ (ℝ*𝑠 ∈ V → (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦)) |
| 18 | 13, 17 | ax-mp 5 | . . . 4 ⊢ (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 19 | 18 | notbii 320 | . . 3 ⊢ (¬ ℝ*𝑠 ∈ Archi ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
| 20 | 10, 12, 19 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ℝ*𝑠 ∈ Archi) |
| 21 | 9, 20 | mpbi 230 | 1 ⊢ ¬ ℝ*𝑠 ∈ Archi |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 class class class wbr 5107 ‘cfv 6511 0cc0 11068 1c1 11069 +∞cpnf 11205 ℝ*cxr 11207 ℝ+crp 12951 ℝ*𝑠cxrs 17463 ⋘cinftm 33130 Archicarchi 33131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-fz 13469 df-seq 13967 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-xrs 17465 df-plt 18289 df-minusg 18869 df-mulg 19000 df-inftm 33132 df-archi 33133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |