![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnarchi | Structured version Visualization version GIF version |
Description: The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
Ref | Expression |
---|---|
xrnarchi | ⊢ ¬ ℝ*𝑠 ∈ Archi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 11318 | . . 3 ⊢ 1 ∈ ℝ* | |
2 | pnfxr 11313 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | 1rp 13036 | . . . 4 ⊢ 1 ∈ ℝ+ | |
4 | pnfinf 33173 | . . . 4 ⊢ (1 ∈ ℝ+ → 1(⋘‘ℝ*𝑠)+∞) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 1(⋘‘ℝ*𝑠)+∞ |
6 | breq1 5151 | . . . 4 ⊢ (𝑥 = 1 → (𝑥(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)𝑦)) | |
7 | breq2 5152 | . . . 4 ⊢ (𝑦 = +∞ → (1(⋘‘ℝ*𝑠)𝑦 ↔ 1(⋘‘ℝ*𝑠)+∞)) | |
8 | 6, 7 | rspc2ev 3635 | . . 3 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1(⋘‘ℝ*𝑠)+∞) → ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦) |
9 | 1, 2, 5, 8 | mp3an 1460 | . 2 ⊢ ∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 |
10 | rexnal 3098 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
11 | dfrex2 3071 | . . . 4 ⊢ (∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) | |
12 | 11 | rexbii 3092 | . . 3 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ∃𝑥 ∈ ℝ* ¬ ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
13 | xrsex 21413 | . . . . 5 ⊢ ℝ*𝑠 ∈ V | |
14 | xrsbas 21414 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
15 | xrs0 32991 | . . . . . 6 ⊢ 0 = (0g‘ℝ*𝑠) | |
16 | eqid 2735 | . . . . . 6 ⊢ (⋘‘ℝ*𝑠) = (⋘‘ℝ*𝑠) | |
17 | 14, 15, 16 | isarchi 33172 | . . . . 5 ⊢ (ℝ*𝑠 ∈ V → (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦)) |
18 | 13, 17 | ax-mp 5 | . . . 4 ⊢ (ℝ*𝑠 ∈ Archi ↔ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
19 | 18 | notbii 320 | . . 3 ⊢ (¬ ℝ*𝑠 ∈ Archi ↔ ¬ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* ¬ 𝑥(⋘‘ℝ*𝑠)𝑦) |
20 | 10, 12, 19 | 3bitr4i 303 | . 2 ⊢ (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ* 𝑥(⋘‘ℝ*𝑠)𝑦 ↔ ¬ ℝ*𝑠 ∈ Archi) |
21 | 9, 20 | mpbi 230 | 1 ⊢ ¬ ℝ*𝑠 ∈ Archi |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 class class class wbr 5148 ‘cfv 6563 0cc0 11153 1c1 11154 +∞cpnf 11290 ℝ*cxr 11292 ℝ+crp 13032 ℝ*𝑠cxrs 17547 ⋘cinftm 33166 Archicarchi 33167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-fz 13545 df-seq 14040 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-tset 17317 df-ple 17318 df-ds 17320 df-0g 17488 df-xrs 17549 df-plt 18388 df-minusg 18968 df-mulg 19099 df-inftm 33168 df-archi 33169 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |