Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfinf Structured version   Visualization version   GIF version

Theorem pnfinf 33163
Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.)
Assertion
Ref Expression
pnfinf (𝐴 ∈ ℝ+𝐴(⋘‘ℝ*𝑠)+∞)

Proof of Theorem pnfinf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rpgt0 12913 . 2 (𝐴 ∈ ℝ+ → 0 < 𝐴)
2 nnz 12499 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32adantl 481 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
4 rpxr 12910 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℝ*)
54adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrsmulgzz 33001 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ*) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴))
73, 5, 6syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴))
83zred 12587 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
9 rpre 12909 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
11 rexmul 13180 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) = (𝑛 · 𝐴))
12 remulcl 11101 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 · 𝐴) ∈ ℝ)
1311, 12eqeltrd 2833 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) ∈ ℝ)
148, 10, 13syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛 ·e 𝐴) ∈ ℝ)
157, 14eqeltrd 2833 . . . 4 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ)
16 ltpnf 13029 . . . 4 ((𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
1715, 16syl 17 . . 3 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
1817ralrimiva 3126 . 2 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
19 xrsex 21331 . . . 4 *𝑠 ∈ V
20 pnfxr 11176 . . . 4 +∞ ∈ ℝ*
21 xrsbas 17520 . . . . 5 * = (Base‘ℝ*𝑠)
22 xrs0 32998 . . . . 5 0 = (0g‘ℝ*𝑠)
23 eqid 2733 . . . . 5 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
24 xrslt 32999 . . . . 5 < = (lt‘ℝ*𝑠)
2521, 22, 23, 24isinftm 33161 . . . 4 ((ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
2619, 20, 25mp3an13 1454 . . 3 (𝐴 ∈ ℝ* → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
274, 26syl 17 . 2 (𝐴 ∈ ℝ+ → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
281, 18, 27mpbir2and 713 1 (𝐴 ∈ ℝ+𝐴(⋘‘ℝ*𝑠)+∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11015  0cc0 11016   · cmul 11021  +∞cpnf 11153  *cxr 11155   < clt 11156  cn 12135  cz 12478  +crp 12900   ·e cxmu 13020  *𝑠cxrs 17414  .gcmg 18990  cinftm 33156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-fz 13418  df-seq 13919  df-struct 17068  df-slot 17103  df-ndx 17115  df-base 17131  df-plusg 17184  df-mulr 17185  df-tset 17190  df-ple 17191  df-ds 17193  df-0g 17355  df-xrs 17416  df-plt 18244  df-minusg 18860  df-mulg 18991  df-inftm 33158
This theorem is referenced by:  xrnarchi  33164
  Copyright terms: Public domain W3C validator