Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfinf Structured version   Visualization version   GIF version

Theorem pnfinf 31788
Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.)
Assertion
Ref Expression
pnfinf (𝐴 ∈ ℝ+𝐴(⋘‘ℝ*𝑠)+∞)

Proof of Theorem pnfinf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rpgt0 12852 . 2 (𝐴 ∈ ℝ+ → 0 < 𝐴)
2 nnz 12452 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32adantl 483 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
4 rpxr 12849 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℝ*)
54adantr 482 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrsmulgzz 31638 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ*) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴))
73, 5, 6syl2anc 585 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴))
83zred 12536 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
9 rpre 12848 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
109adantr 482 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
11 rexmul 13115 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) = (𝑛 · 𝐴))
12 remulcl 11066 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 · 𝐴) ∈ ℝ)
1311, 12eqeltrd 2838 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) ∈ ℝ)
148, 10, 13syl2anc 585 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛 ·e 𝐴) ∈ ℝ)
157, 14eqeltrd 2838 . . . 4 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ)
16 ltpnf 12966 . . . 4 ((𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
1715, 16syl 17 . . 3 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
1817ralrimiva 3141 . 2 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
19 xrsex 20723 . . . 4 *𝑠 ∈ V
20 pnfxr 11139 . . . 4 +∞ ∈ ℝ*
21 xrsbas 20724 . . . . 5 * = (Base‘ℝ*𝑠)
22 xrs0 31635 . . . . 5 0 = (0g‘ℝ*𝑠)
23 eqid 2737 . . . . 5 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
24 xrslt 31636 . . . . 5 < = (lt‘ℝ*𝑠)
2521, 22, 23, 24isinftm 31786 . . . 4 ((ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
2619, 20, 25mp3an13 1452 . . 3 (𝐴 ∈ ℝ* → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
274, 26syl 17 . 2 (𝐴 ∈ ℝ+ → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
281, 18, 27mpbir2and 711 1 (𝐴 ∈ ℝ+𝐴(⋘‘ℝ*𝑠)+∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  Vcvv 3443   class class class wbr 5100  cfv 6488  (class class class)co 7346  cr 10980  0cc0 10981   · cmul 10986  +∞cpnf 11116  *cxr 11118   < clt 11119  cn 12083  cz 12429  +crp 12840   ·e cxmu 12957  *𝑠cxrs 17313  .gcmg 18801  cinftm 31781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-9 12153  df-n0 12344  df-z 12430  df-dec 12548  df-uz 12693  df-rp 12841  df-xneg 12958  df-xadd 12959  df-xmul 12960  df-fz 13350  df-seq 13832  df-struct 16950  df-slot 16985  df-ndx 16997  df-base 17015  df-plusg 17077  df-mulr 17078  df-tset 17083  df-ple 17084  df-ds 17086  df-0g 17254  df-xrs 17315  df-plt 18150  df-minusg 18682  df-mulg 18802  df-inftm 31783
This theorem is referenced by:  xrnarchi  31789
  Copyright terms: Public domain W3C validator