| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pnfinf | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| pnfinf | ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgt0 12924 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 2 | nnz 12510 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 4 | rpxr 12921 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*) |
| 6 | xrsmulgzz 32976 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ*) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) |
| 8 | 3 | zred 12598 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
| 9 | rpre 12920 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 11 | rexmul 13191 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) = (𝑛 · 𝐴)) | |
| 12 | remulcl 11113 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 · 𝐴) ∈ ℝ) | |
| 13 | 11, 12 | eqeltrd 2828 | . . . . . 6 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) ∈ ℝ) |
| 14 | 8, 10, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛 ·e 𝐴) ∈ ℝ) |
| 15 | 7, 14 | eqeltrd 2828 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ) |
| 16 | ltpnf 13040 | . . . 4 ⊢ ((𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
| 18 | 17 | ralrimiva 3121 | . 2 ⊢ (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
| 19 | xrsex 21309 | . . . 4 ⊢ ℝ*𝑠 ∈ V | |
| 20 | pnfxr 11188 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 21 | xrsbas 17528 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 22 | xrs0 32973 | . . . . 5 ⊢ 0 = (0g‘ℝ*𝑠) | |
| 23 | eqid 2729 | . . . . 5 ⊢ (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠) | |
| 24 | xrslt 32974 | . . . . 5 ⊢ < = (lt‘ℝ*𝑠) | |
| 25 | 21, 22, 23, 24 | isinftm 33133 | . . . 4 ⊢ ((ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 26 | 19, 20, 25 | mp3an13 1454 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 27 | 4, 26 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 28 | 1, 18, 27 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 · cmul 11033 +∞cpnf 11165 ℝ*cxr 11167 < clt 11168 ℕcn 12146 ℤcz 12489 ℝ+crp 12911 ·e cxmu 13031 ℝ*𝑠cxrs 17422 .gcmg 18964 ⋘cinftm 33128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-fz 13429 df-seq 13927 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-tset 17198 df-ple 17199 df-ds 17201 df-0g 17363 df-xrs 17424 df-plt 18252 df-minusg 18834 df-mulg 18965 df-inftm 33130 |
| This theorem is referenced by: xrnarchi 33136 |
| Copyright terms: Public domain | W3C validator |