| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pnfinf | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| pnfinf | ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgt0 12971 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 2 | nnz 12557 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 4 | rpxr 12968 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*) |
| 6 | xrsmulgzz 32954 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ*) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) |
| 8 | 3 | zred 12645 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
| 9 | rpre 12967 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 11 | rexmul 13238 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) = (𝑛 · 𝐴)) | |
| 12 | remulcl 11160 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 · 𝐴) ∈ ℝ) | |
| 13 | 11, 12 | eqeltrd 2829 | . . . . . 6 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) ∈ ℝ) |
| 14 | 8, 10, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛 ·e 𝐴) ∈ ℝ) |
| 15 | 7, 14 | eqeltrd 2829 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ) |
| 16 | ltpnf 13087 | . . . 4 ⊢ ((𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
| 18 | 17 | ralrimiva 3126 | . 2 ⊢ (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
| 19 | xrsex 21301 | . . . 4 ⊢ ℝ*𝑠 ∈ V | |
| 20 | pnfxr 11235 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 21 | xrsbas 21302 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 22 | xrs0 32951 | . . . . 5 ⊢ 0 = (0g‘ℝ*𝑠) | |
| 23 | eqid 2730 | . . . . 5 ⊢ (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠) | |
| 24 | xrslt 32952 | . . . . 5 ⊢ < = (lt‘ℝ*𝑠) | |
| 25 | 21, 22, 23, 24 | isinftm 33142 | . . . 4 ⊢ ((ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 26 | 19, 20, 25 | mp3an13 1454 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 27 | 4, 26 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 28 | 1, 18, 27 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 · cmul 11080 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ℕcn 12193 ℤcz 12536 ℝ+crp 12958 ·e cxmu 13078 ℝ*𝑠cxrs 17470 .gcmg 19006 ⋘cinftm 33137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-seq 13974 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-xrs 17472 df-plt 18296 df-minusg 18876 df-mulg 19007 df-inftm 33139 |
| This theorem is referenced by: xrnarchi 33145 |
| Copyright terms: Public domain | W3C validator |