Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfinf Structured version   Visualization version   GIF version

Theorem pnfinf 33163
Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.)
Assertion
Ref Expression
pnfinf (𝐴 ∈ ℝ+𝐴(⋘‘ℝ*𝑠)+∞)

Proof of Theorem pnfinf
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rpgt0 13069 . 2 (𝐴 ∈ ℝ+ → 0 < 𝐴)
2 nnz 12660 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32adantl 481 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
4 rpxr 13066 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℝ*)
54adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrsmulgzz 32992 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ*) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴))
73, 5, 6syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴))
83zred 12747 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
9 rpre 13065 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
11 rexmul 13333 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) = (𝑛 · 𝐴))
12 remulcl 11269 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 · 𝐴) ∈ ℝ)
1311, 12eqeltrd 2844 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) ∈ ℝ)
148, 10, 13syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛 ·e 𝐴) ∈ ℝ)
157, 14eqeltrd 2844 . . . 4 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ)
16 ltpnf 13183 . . . 4 ((𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
1715, 16syl 17 . . 3 ((𝐴 ∈ ℝ+𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
1817ralrimiva 3152 . 2 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)
19 xrsex 21418 . . . 4 *𝑠 ∈ V
20 pnfxr 11344 . . . 4 +∞ ∈ ℝ*
21 xrsbas 21419 . . . . 5 * = (Base‘ℝ*𝑠)
22 xrs0 32989 . . . . 5 0 = (0g‘ℝ*𝑠)
23 eqid 2740 . . . . 5 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
24 xrslt 32990 . . . . 5 < = (lt‘ℝ*𝑠)
2521, 22, 23, 24isinftm 33161 . . . 4 ((ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
2619, 20, 25mp3an13 1452 . . 3 (𝐴 ∈ ℝ* → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
274, 26syl 17 . 2 (𝐴 ∈ ℝ+ → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞)))
281, 18, 27mpbir2and 712 1 (𝐴 ∈ ℝ+𝐴(⋘‘ℝ*𝑠)+∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cn 12293  cz 12639  +crp 13057   ·e cxmu 13174  *𝑠cxrs 17560  .gcmg 19107  cinftm 33156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-xrs 17562  df-plt 18400  df-minusg 18977  df-mulg 19108  df-inftm 33158
This theorem is referenced by:  xrnarchi  33164
  Copyright terms: Public domain W3C validator