Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pnfinf | Structured version Visualization version GIF version |
Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
Ref | Expression |
---|---|
pnfinf | ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgt0 12742 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
2 | nnz 12342 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
4 | rpxr 12739 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
5 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*) |
6 | xrsmulgzz 31287 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ*) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) | |
7 | 3, 5, 6 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) |
8 | 3 | zred 12426 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
9 | rpre 12738 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
11 | rexmul 13005 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) = (𝑛 · 𝐴)) | |
12 | remulcl 10956 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 · 𝐴) ∈ ℝ) | |
13 | 11, 12 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) ∈ ℝ) |
14 | 8, 10, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛 ·e 𝐴) ∈ ℝ) |
15 | 7, 14 | eqeltrd 2839 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ) |
16 | ltpnf 12856 | . . . 4 ⊢ ((𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
18 | 17 | ralrimiva 3103 | . 2 ⊢ (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
19 | xrsex 20613 | . . . 4 ⊢ ℝ*𝑠 ∈ V | |
20 | pnfxr 11029 | . . . 4 ⊢ +∞ ∈ ℝ* | |
21 | xrsbas 20614 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
22 | xrs0 31284 | . . . . 5 ⊢ 0 = (0g‘ℝ*𝑠) | |
23 | eqid 2738 | . . . . 5 ⊢ (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠) | |
24 | xrslt 31285 | . . . . 5 ⊢ < = (lt‘ℝ*𝑠) | |
25 | 21, 22, 23, 24 | isinftm 31435 | . . . 4 ⊢ ((ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
26 | 19, 20, 25 | mp3an13 1451 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
27 | 4, 26 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
28 | 1, 18, 27 | mpbir2and 710 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 · cmul 10876 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ℕcn 11973 ℤcz 12319 ℝ+crp 12730 ·e cxmu 12847 ℝ*𝑠cxrs 17211 .gcmg 18700 ⋘cinftm 31430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-fz 13240 df-seq 13722 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-tset 16981 df-ple 16982 df-ds 16984 df-0g 17152 df-xrs 17213 df-plt 18048 df-minusg 18581 df-mulg 18701 df-inftm 31432 |
This theorem is referenced by: xrnarchi 31438 |
Copyright terms: Public domain | W3C validator |