| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pnfinf | Structured version Visualization version GIF version | ||
| Description: Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| pnfinf | ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgt0 12913 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 2 | nnz 12499 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 4 | rpxr 12910 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*) |
| 6 | xrsmulgzz 33001 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ 𝐴 ∈ ℝ*) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) = (𝑛 ·e 𝐴)) |
| 8 | 3 | zred 12587 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ) |
| 9 | rpre 12909 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 11 | rexmul 13180 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) = (𝑛 · 𝐴)) | |
| 12 | remulcl 11101 | . . . . . . 7 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 · 𝐴) ∈ ℝ) | |
| 13 | 11, 12 | eqeltrd 2833 | . . . . . 6 ⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑛 ·e 𝐴) ∈ ℝ) |
| 14 | 8, 10, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛 ·e 𝐴) ∈ ℝ) |
| 15 | 7, 14 | eqeltrd 2833 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ) |
| 16 | ltpnf 13029 | . . . 4 ⊢ ((𝑛(.g‘ℝ*𝑠)𝐴) ∈ ℝ → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ℕ) → (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
| 18 | 17 | ralrimiva 3126 | . 2 ⊢ (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞) |
| 19 | xrsex 21331 | . . . 4 ⊢ ℝ*𝑠 ∈ V | |
| 20 | pnfxr 11176 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 21 | xrsbas 17520 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 22 | xrs0 32998 | . . . . 5 ⊢ 0 = (0g‘ℝ*𝑠) | |
| 23 | eqid 2733 | . . . . 5 ⊢ (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠) | |
| 24 | xrslt 32999 | . . . . 5 ⊢ < = (lt‘ℝ*𝑠) | |
| 25 | 21, 22, 23, 24 | isinftm 33161 | . . . 4 ⊢ ((ℝ*𝑠 ∈ V ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 26 | 19, 20, 25 | mp3an13 1454 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 27 | 4, 26 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴(⋘‘ℝ*𝑠)+∞ ↔ (0 < 𝐴 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘ℝ*𝑠)𝐴) < +∞))) |
| 28 | 1, 18, 27 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 Vcvv 3438 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 0cc0 11016 · cmul 11021 +∞cpnf 11153 ℝ*cxr 11155 < clt 11156 ℕcn 12135 ℤcz 12478 ℝ+crp 12900 ·e cxmu 13020 ℝ*𝑠cxrs 17414 .gcmg 18990 ⋘cinftm 33156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-fz 13418 df-seq 13919 df-struct 17068 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-mulr 17185 df-tset 17190 df-ple 17191 df-ds 17193 df-0g 17355 df-xrs 17416 df-plt 18244 df-minusg 18860 df-mulg 18991 df-inftm 33158 |
| This theorem is referenced by: xrnarchi 33164 |
| Copyright terms: Public domain | W3C validator |