New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ovex | GIF version |
Description: The result of an operation is a set. (Contributed by set.mm contributors, 13-Mar-1995.) |
Ref | Expression |
---|---|
ovex | ⊢ (AFB) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5527 | . 2 ⊢ (AFB) = (F ‘〈A, B〉) | |
2 | fvex 5340 | . 2 ⊢ (F ‘〈A, B〉) ∈ V | |
3 | 1, 2 | eqeltri 2423 | 1 ⊢ (AFB) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 〈cop 4562 ‘cfv 4782 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 df-fv 4796 df-ov 5527 |
This theorem is referenced by: ovelrn 5609 ndmovass 5619 ndmovdistr 5620 caov4 5640 caov411 5641 caovdir 5643 caovdilem 5644 caovlem2 5645 enmap2lem1 6064 enmap1lem1 6070 enprmaplem1 6077 ovcelem1 6172 ceex 6175 ce0nnul 6178 ce0nnulb 6183 ceclb 6184 fce 6189 ce0 6191 ce2 6193 ncvsq 6257 spaccl 6287 spacind 6288 spacis 6289 nchoicelem9 6298 |
Copyright terms: Public domain | W3C validator |