New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ovex | GIF version |
Description: The result of an operation is a set. (Contributed by set.mm contributors, 13-Mar-1995.) |
Ref | Expression |
---|---|
ovex | ⊢ (AFB) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5526 | . 2 ⊢ (AFB) = (F ‘〈A, B〉) | |
2 | fvex 5339 | . 2 ⊢ (F ‘〈A, B〉) ∈ V | |
3 | 1, 2 | eqeltri 2423 | 1 ⊢ (AFB) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2859 〈cop 4561 ‘cfv 4781 (class class class)co 5525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-uni 3892 df-iota 4339 df-fv 4795 df-ov 5526 |
This theorem is referenced by: ovelrn 5608 ndmovass 5618 ndmovdistr 5619 caov4 5639 caov411 5640 caovdir 5642 caovdilem 5643 caovlem2 5644 enmap2lem1 6063 enmap1lem1 6069 enprmaplem1 6076 ovcelem1 6171 ceex 6174 ce0nnul 6177 ce0nnulb 6182 ceclb 6183 fce 6188 ce0 6190 ce2 6192 ncvsq 6256 spaccl 6286 spacind 6287 spacis 6288 nchoicelem9 6297 |
Copyright terms: Public domain | W3C validator |