| Step | Hyp | Ref
| Expression |
| 1 | | enprmaplem1.1 |
. . 3
⊢ W = (r ∈ (A
↑m B) ↦ (◡r
“ {x})) |
| 2 | | elima1c 4948 |
. . . . . . 7
⊢ (〈{y}, r〉 ∈ (( SI
(1st ↾ (◡2nd “ {x})) ⊗ S )
“ 1c) ↔ ∃t〈{t}, 〈{y}, r〉〉 ∈ ( SI (1st ↾
(◡2nd “ {x})) ⊗ S
)) |
| 3 | | oteltxp 5783 |
. . . . . . . . 9
⊢ (〈{t}, 〈{y}, r〉〉 ∈ ( SI (1st ↾
(◡2nd “ {x})) ⊗ S )
↔ (〈{t}, {y}〉 ∈ SI (1st ↾
(◡2nd “ {x})) ∧ 〈{t}, r〉 ∈ S
)) |
| 4 | | vex 2863 |
. . . . . . . . . . . 12
⊢ t ∈
V |
| 5 | | vex 2863 |
. . . . . . . . . . . 12
⊢ y ∈
V |
| 6 | 4, 5 | opsnelsi 5775 |
. . . . . . . . . . 11
⊢ (〈{t}, {y}〉 ∈ SI (1st
↾ (◡2nd “ {x})) ↔ 〈t, y〉 ∈ (1st ↾ (◡2nd “ {x}))) |
| 7 | | df-br 4641 |
. . . . . . . . . . . 12
⊢ (t(1st ↾ (◡2nd “ {x}))y ↔
〈t,
y〉 ∈ (1st ↾ (◡2nd “ {x}))) |
| 8 | | brres 4950 |
. . . . . . . . . . . . 13
⊢ (t(1st ↾ (◡2nd “ {x}))y ↔
(t1st y ∧ t ∈ (◡2nd “ {x}))) |
| 9 | | eliniseg 5021 |
. . . . . . . . . . . . . 14
⊢ (t ∈ (◡2nd “ {x}) ↔ t2nd x) |
| 10 | 9 | anbi2i 675 |
. . . . . . . . . . . . 13
⊢ ((t1st y ∧ t ∈ (◡2nd “ {x})) ↔ (t1st y ∧ t2nd x)) |
| 11 | 8, 10 | bitri 240 |
. . . . . . . . . . . 12
⊢ (t(1st ↾ (◡2nd “ {x}))y ↔
(t1st y ∧ t2nd x)) |
| 12 | 7, 11 | bitr3i 242 |
. . . . . . . . . . 11
⊢ (〈t, y〉 ∈ (1st ↾ (◡2nd “ {x})) ↔ (t1st y ∧ t2nd x)) |
| 13 | | vex 2863 |
. . . . . . . . . . . 12
⊢ x ∈
V |
| 14 | 5, 13 | op1st2nd 5791 |
. . . . . . . . . . 11
⊢ ((t1st y ∧ t2nd x) ↔ t =
〈y,
x〉) |
| 15 | 6, 12, 14 | 3bitri 262 |
. . . . . . . . . 10
⊢ (〈{t}, {y}〉 ∈ SI (1st
↾ (◡2nd “ {x})) ↔ t =
〈y,
x〉) |
| 16 | | vex 2863 |
. . . . . . . . . . 11
⊢ r ∈
V |
| 17 | 4, 16 | opelssetsn 4761 |
. . . . . . . . . 10
⊢ (〈{t}, r〉 ∈ S ↔ t ∈ r) |
| 18 | 15, 17 | anbi12i 678 |
. . . . . . . . 9
⊢ ((〈{t}, {y}〉 ∈ SI (1st
↾ (◡2nd “ {x})) ∧ 〈{t}, r〉 ∈ S ) ↔
(t = 〈y, x〉 ∧ t ∈ r)) |
| 19 | 3, 18 | bitri 240 |
. . . . . . . 8
⊢ (〈{t}, 〈{y}, r〉〉 ∈ ( SI (1st ↾
(◡2nd “ {x})) ⊗ S )
↔ (t = 〈y, x〉 ∧ t ∈ r)) |
| 20 | 19 | exbii 1582 |
. . . . . . 7
⊢ (∃t〈{t}, 〈{y}, r〉〉 ∈ ( SI (1st ↾
(◡2nd “ {x})) ⊗ S )
↔ ∃t(t = 〈y, x〉 ∧ t ∈ r)) |
| 21 | 2, 20 | bitri 240 |
. . . . . 6
⊢ (〈{y}, r〉 ∈ (( SI
(1st ↾ (◡2nd “ {x})) ⊗ S )
“ 1c) ↔ ∃t(t = 〈y, x〉 ∧ t ∈ r)) |
| 22 | 5, 13 | opex 4589 |
. . . . . . . 8
⊢ 〈y, x〉 ∈ V |
| 23 | | eleq1 2413 |
. . . . . . . 8
⊢ (t = 〈y, x〉 → (t
∈ r
↔ 〈y, x〉 ∈ r)) |
| 24 | 22, 23 | ceqsexv 2895 |
. . . . . . 7
⊢ (∃t(t = 〈y, x〉 ∧ t ∈ r) ↔ 〈y, x〉 ∈ r) |
| 25 | | df-br 4641 |
. . . . . . 7
⊢ (yrx ↔ 〈y, x〉 ∈ r) |
| 26 | 24, 25 | bitr4i 243 |
. . . . . 6
⊢ (∃t(t = 〈y, x〉 ∧ t ∈ r) ↔ yrx) |
| 27 | 21, 26 | bitri 240 |
. . . . 5
⊢ (〈{y}, r〉 ∈ (( SI
(1st ↾ (◡2nd “ {x})) ⊗ S )
“ 1c) ↔ yrx) |
| 28 | | eliniseg 5021 |
. . . . 5
⊢ (y ∈ (◡r
“ {x}) ↔ yrx) |
| 29 | 27, 28 | bitr4i 243 |
. . . 4
⊢ (〈{y}, r〉 ∈ (( SI
(1st ↾ (◡2nd “ {x})) ⊗ S )
“ 1c) ↔ y
∈ (◡r
“ {x})) |
| 30 | 29 | releqmpt 5809 |
. . 3
⊢ (((A ↑m B) × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2
(( SI (1st ↾ (◡2nd “ {x})) ⊗ S )
“ 1c)) “ 1c)) = (r ∈ (A ↑m B) ↦ (◡r
“ {x})) |
| 31 | 1, 30 | eqtr4i 2376 |
. 2
⊢ W = (((A
↑m B) × V)
∩ ◡ ∼ (( Ins3 S ⊕ Ins2 (( SI (1st
↾ (◡2nd “ {x})) ⊗ S )
“ 1c)) “ 1c)) |
| 32 | | ovex 5552 |
. . 3
⊢ (A ↑m B) ∈
V |
| 33 | | 1stex 4740 |
. . . . . . 7
⊢ 1st
∈ V |
| 34 | | 2ndex 5113 |
. . . . . . . . 9
⊢ 2nd
∈ V |
| 35 | 34 | cnvex 5103 |
. . . . . . . 8
⊢ ◡2nd ∈ V |
| 36 | | snex 4112 |
. . . . . . . 8
⊢ {x} ∈
V |
| 37 | 35, 36 | imaex 4748 |
. . . . . . 7
⊢ (◡2nd “ {x}) ∈
V |
| 38 | 33, 37 | resex 5118 |
. . . . . 6
⊢ (1st
↾ (◡2nd “ {x})) ∈
V |
| 39 | 38 | siex 4754 |
. . . . 5
⊢ SI (1st ↾
(◡2nd “ {x})) ∈
V |
| 40 | | ssetex 4745 |
. . . . 5
⊢ S ∈
V |
| 41 | 39, 40 | txpex 5786 |
. . . 4
⊢ ( SI (1st ↾
(◡2nd “ {x})) ⊗ S )
∈ V |
| 42 | | 1cex 4143 |
. . . 4
⊢
1c ∈
V |
| 43 | 41, 42 | imaex 4748 |
. . 3
⊢ (( SI (1st ↾
(◡2nd “ {x})) ⊗ S )
“ 1c) ∈
V |
| 44 | 32, 43 | mptexlem 5811 |
. 2
⊢ (((A ↑m B) × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2
(( SI (1st ↾ (◡2nd “ {x})) ⊗ S )
“ 1c)) “ 1c)) ∈ V |
| 45 | 31, 44 | eqeltri 2423 |
1
⊢ W ∈
V |