NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enprmaplem1 GIF version

Theorem enprmaplem1 6077
Description: Lemma for enprmap 6083. Set up stratification. (Contributed by SF, 3-Mar-2015.)
Hypothesis
Ref Expression
enprmaplem1.1 W = (r (Am B) (r “ {x}))
Assertion
Ref Expression
enprmaplem1 W V
Distinct variable groups:   A,r   B,r   x,r
Allowed substitution hints:   A(x)   B(x)   W(x,r)

Proof of Theorem enprmaplem1
Dummy variables y t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enprmaplem1.1 . . 3 W = (r (Am B) (r “ {x}))
2 elima1c 4948 . . . . . . 7 ({y}, r (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c) ↔ t{t}, {y}, r ( SI (1st (2nd “ {x})) ⊗ S ))
3 oteltxp 5783 . . . . . . . . 9 ({t}, {y}, r ( SI (1st (2nd “ {x})) ⊗ S ) ↔ ({t}, {y} SI (1st (2nd “ {x})) {t}, r S ))
4 vex 2863 . . . . . . . . . . . 12 t V
5 vex 2863 . . . . . . . . . . . 12 y V
64, 5opsnelsi 5775 . . . . . . . . . . 11 ({t}, {y} SI (1st (2nd “ {x})) ↔ t, y (1st (2nd “ {x})))
7 df-br 4641 . . . . . . . . . . . 12 (t(1st (2nd “ {x}))yt, y (1st (2nd “ {x})))
8 brres 4950 . . . . . . . . . . . . 13 (t(1st (2nd “ {x}))y ↔ (t1st y t (2nd “ {x})))
9 eliniseg 5021 . . . . . . . . . . . . . 14 (t (2nd “ {x}) ↔ t2nd x)
109anbi2i 675 . . . . . . . . . . . . 13 ((t1st y t (2nd “ {x})) ↔ (t1st y t2nd x))
118, 10bitri 240 . . . . . . . . . . . 12 (t(1st (2nd “ {x}))y ↔ (t1st y t2nd x))
127, 11bitr3i 242 . . . . . . . . . . 11 (t, y (1st (2nd “ {x})) ↔ (t1st y t2nd x))
13 vex 2863 . . . . . . . . . . . 12 x V
145, 13op1st2nd 5791 . . . . . . . . . . 11 ((t1st y t2nd x) ↔ t = y, x)
156, 12, 143bitri 262 . . . . . . . . . 10 ({t}, {y} SI (1st (2nd “ {x})) ↔ t = y, x)
16 vex 2863 . . . . . . . . . . 11 r V
174, 16opelssetsn 4761 . . . . . . . . . 10 ({t}, r S t r)
1815, 17anbi12i 678 . . . . . . . . 9 (({t}, {y} SI (1st (2nd “ {x})) {t}, r S ) ↔ (t = y, x t r))
193, 18bitri 240 . . . . . . . 8 ({t}, {y}, r ( SI (1st (2nd “ {x})) ⊗ S ) ↔ (t = y, x t r))
2019exbii 1582 . . . . . . 7 (t{t}, {y}, r ( SI (1st (2nd “ {x})) ⊗ S ) ↔ t(t = y, x t r))
212, 20bitri 240 . . . . . 6 ({y}, r (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c) ↔ t(t = y, x t r))
225, 13opex 4589 . . . . . . . 8 y, x V
23 eleq1 2413 . . . . . . . 8 (t = y, x → (t ry, x r))
2422, 23ceqsexv 2895 . . . . . . 7 (t(t = y, x t r) ↔ y, x r)
25 df-br 4641 . . . . . . 7 (yrxy, x r)
2624, 25bitr4i 243 . . . . . 6 (t(t = y, x t r) ↔ yrx)
2721, 26bitri 240 . . . . 5 ({y}, r (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c) ↔ yrx)
28 eliniseg 5021 . . . . 5 (y (r “ {x}) ↔ yrx)
2927, 28bitr4i 243 . . . 4 ({y}, r (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c) ↔ y (r “ {x}))
3029releqmpt 5809 . . 3 (((Am B) × V) ∩ ∼ (( Ins3 S Ins2 (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c)) “ 1c)) = (r (Am B) (r “ {x}))
311, 30eqtr4i 2376 . 2 W = (((Am B) × V) ∩ ∼ (( Ins3 S Ins2 (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c)) “ 1c))
32 ovex 5552 . . 3 (Am B) V
33 1stex 4740 . . . . . . 7 1st V
34 2ndex 5113 . . . . . . . . 9 2nd V
3534cnvex 5103 . . . . . . . 8 2nd V
36 snex 4112 . . . . . . . 8 {x} V
3735, 36imaex 4748 . . . . . . 7 (2nd “ {x}) V
3833, 37resex 5118 . . . . . 6 (1st (2nd “ {x})) V
3938siex 4754 . . . . 5 SI (1st (2nd “ {x})) V
40 ssetex 4745 . . . . 5 S V
4139, 40txpex 5786 . . . 4 ( SI (1st (2nd “ {x})) ⊗ S ) V
42 1cex 4143 . . . 4 1c V
4341, 42imaex 4748 . . 3 (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c) V
4432, 43mptexlem 5811 . 2 (((Am B) × V) ∩ ∼ (( Ins3 S Ins2 (( SI (1st (2nd “ {x})) ⊗ S ) “ 1c)) “ 1c)) V
4531, 44eqeltri 2423 1 W V
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  ccompl 3206  cin 3209  csymdif 3210  {csn 3738  1cc1c 4135  cop 4562   class class class wbr 4640  1st c1st 4718   S csset 4720   SI csi 4721  cima 4723   × cxp 4771  ccnv 4772   cres 4775  2nd c2nd 4784  (class class class)co 5526   cmpt 5652  ctxp 5736   Ins2 cins2 5750   Ins3 cins3 5752  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fv 4796  df-2nd 4798  df-ov 5527  df-mpt 5653  df-txp 5737  df-ins2 5751  df-ins3 5753
This theorem is referenced by:  enprmap  6083
  Copyright terms: Public domain W3C validator