New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xpkex | GIF version |
Description: The Kuratowski cross product of two sets is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
xpkex.1 | ⊢ A ∈ V |
xpkex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
xpkex | ⊢ (A ×k B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpkex.1 | . 2 ⊢ A ∈ V | |
2 | xpkex.2 | . 2 ⊢ B ∈ V | |
3 | xpkexg 4289 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ×k B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ×k B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ×k cxpk 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 |
This theorem is referenced by: sikexg 4297 imakexg 4300 ins2kexg 4306 ins3kexg 4307 imagekexg 4312 nnsucelrlem1 4425 ltfinex 4465 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfinrelkex 4488 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 srelkex 4526 tfinnnlem1 4534 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 setconslem5 4736 1stex 4740 swapex 4743 ssetex 4745 imaexg 4747 coexg 4750 siexg 4753 |
Copyright terms: Public domain | W3C validator |