NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssetex GIF version

Theorem ssetex 4745
Description: The subset relationship is a set. (Contributed by SF, 6-Jan-2015.)
Assertion
Ref Expression
ssetex S V

Proof of Theorem ssetex
StepHypRef Expression
1 dfsset2 4744 . 2 S = ⋃11((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk )
2 vvex 4110 . . . . . . . 8 V V
32, 2xpkex 4290 . . . . . . 7 (V ×k V) V
43, 2xpkex 4290 . . . . . 6 ((V ×k V) ×k V) V
5 setconslem5 4736 . . . . . . 7 ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c) V
65cnvkex 4288 . . . . . 6 k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c) V
74, 6inex 4106 . . . . 5 (((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) V
8 ssetkex 4295 . . . . 5 Sk V
97, 8imakex 4301 . . . 4 ((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk ) V
109uni1ex 4294 . . 3 1((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk ) V
1110uni1ex 4294 . 2 11((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk ) V
121, 11eqeltri 2423 1 S V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  {csn 3738  1cuni1 4134  1cc1c 4135  1cpw1 4136   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184   Ik cidk 4185   Nn cnnc 4374  0cc0c 4375   S csset 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-sset 4726
This theorem is referenced by:  idex  5505  imageexg  5801  mptexlem  5811  mpt2exlem  5812  cupex  5817  composeex  5821  disjex  5824  addcfnex  5825  funsex  5829  crossex  5851  pw1fnex  5853  domfnex  5871  ranfnex  5872  clos1ex  5877  transex  5911  refex  5912  antisymex  5913  connexex  5914  foundex  5915  extex  5916  symex  5917  ssetpov  5945  qsexg  5983  enprmaplem1  6077  nenpw1pwlem1  6085  lecex  6116  mucex  6134  ovcelem1  6172  ceex  6175  tcfnex  6245  nmembers1lem1  6269  nchoicelem11  6300  nchoicelem16  6305  nchoicelem18  6307
  Copyright terms: Public domain W3C validator