NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssetex GIF version

Theorem ssetex 4744
Description: The subset relationship is a set. (Contributed by SF, 6-Jan-2015.)
Assertion
Ref Expression
ssetex S V

Proof of Theorem ssetex
StepHypRef Expression
1 dfsset2 4743 . 2 S = ⋃11((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk )
2 vvex 4109 . . . . . . . 8 V V
32, 2xpkex 4289 . . . . . . 7 (V ×k V) V
43, 2xpkex 4289 . . . . . 6 ((V ×k V) ×k V) V
5 setconslem5 4735 . . . . . . 7 ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c) V
65cnvkex 4287 . . . . . 6 k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c) V
74, 6inex 4105 . . . . 5 (((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) V
8 ssetkex 4294 . . . . 5 Sk V
97, 8imakex 4300 . . . 4 ((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk ) V
109uni1ex 4293 . . 3 1((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk ) V
1110uni1ex 4293 . 2 11((((V ×k V) ×k V) ∩ k ∼ (( Ins3k SIk SIk SkIns2k ( Ins3k ( Sk k SIk kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ∪ Ins2k (( Ins2k SkIns3k SIk ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c)) “k 111c))) “k 11111c)) “k Sk ) V
121, 11eqeltri 2423 1 S V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2859  ccompl 3205   cdif 3206  cun 3207  cin 3208  csymdif 3209  {csn 3737  1cuni1 4133  1cc1c 4134  1cpw1 4135   ×k cxpk 4174  kccnvk 4175   Ins2k cins2k 4176   Ins3k cins3k 4177  k cimak 4179   k ccomk 4180   SIk csik 4181  Imagekcimagek 4182   Sk cssetk 4183   Ik cidk 4184   Nn cnnc 4373  0cc0c 4374   S csset 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566  df-opab 4623  df-sset 4725
This theorem is referenced by:  idex  5504  imageexg  5800  mptexlem  5810  mpt2exlem  5811  cupex  5816  composeex  5820  disjex  5823  addcfnex  5824  funsex  5828  crossex  5850  pw1fnex  5852  domfnex  5870  ranfnex  5871  clos1ex  5876  transex  5910  refex  5911  antisymex  5912  connexex  5913  foundex  5914  extex  5915  symex  5916  ssetpov  5944  qsexg  5982  enprmaplem1  6076  nenpw1pwlem1  6084  lecex  6115  mucex  6133  ovcelem1  6171  ceex  6174  tcfnex  6244  nmembers1lem1  6268  nchoicelem11  6299  nchoicelem16  6304  nchoicelem18  6306
  Copyright terms: Public domain W3C validator