HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atomli Structured version   Visualization version   GIF version

Theorem atomli 29211
Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1 𝐴C
Assertion
Ref Expression
atomli (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))

Proof of Theorem atomli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . . . . . . 9 𝐴C
2 atelch 29173 . . . . . . . . 9 (𝐵 ∈ HAtoms → 𝐵C )
3 chjcl 28186 . . . . . . . . 9 ((𝐴C𝐵C ) → (𝐴 𝐵) ∈ C )
41, 2, 3sylancr 694 . . . . . . . 8 (𝐵 ∈ HAtoms → (𝐴 𝐵) ∈ C )
51choccli 28136 . . . . . . . 8 (⊥‘𝐴) ∈ C
6 chincl 28328 . . . . . . . 8 (((𝐴 𝐵) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
74, 5, 6sylancl 693 . . . . . . 7 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C )
8 hatomic 29189 . . . . . . 7 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ C ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
97, 8sylan 488 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)))
10 atelch 29173 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ HAtoms → 𝑥C )
11 inss2 3826 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)
12 sstr 3603 . . . . . . . . . . . . . . . . . 18 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
1311, 12mpan2 706 . . . . . . . . . . . . . . . . 17 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (⊥‘𝐴))
141pjococi 28266 . . . . . . . . . . . . . . . . . . . . 21 (⊥‘(⊥‘𝐴)) = 𝐴
1514oveq1i 6645 . . . . . . . . . . . . . . . . . . . 20 ((⊥‘(⊥‘𝐴)) ∨ 𝑥) = (𝐴 𝑥)
1615ineq1i 3802 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝑥) ∩ (⊥‘𝐴))
17 incom 3797 . . . . . . . . . . . . . . . . . . 19 (((⊥‘(⊥‘𝐴)) ∨ 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
1816, 17eqtr3i 2644 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥))
19 pjoml3 28441 . . . . . . . . . . . . . . . . . . . 20 (((⊥‘𝐴) ∈ C𝑥C ) → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
205, 19mpan 705 . . . . . . . . . . . . . . . . . . 19 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥))
2120imp 445 . . . . . . . . . . . . . . . . . 18 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((⊥‘𝐴) ∩ ((⊥‘(⊥‘𝐴)) ∨ 𝑥)) = 𝑥)
2218, 21syl5eq 2666 . . . . . . . . . . . . . . . . 17 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2310, 13, 22syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
2423ad2ant2lr 783 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = 𝑥)
25 inss1 3825 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)
26 sstr 3603 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ⊆ (𝐴 𝐵)) → 𝑥 ⊆ (𝐴 𝐵))
2725, 26mpan2 706 . . . . . . . . . . . . . . . . . . 19 (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → 𝑥 ⊆ (𝐴 𝐵))
28 chub1 28336 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴C𝐵C ) → 𝐴 ⊆ (𝐴 𝐵))
291, 28mpan 705 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵C𝐴 ⊆ (𝐴 𝐵))
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → 𝐴 ⊆ (𝐴 𝐵))
311, 3mpan 705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵C → (𝐴 𝐵) ∈ C )
32 chlub 28338 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴C𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
331, 32mp3an1 1409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥C ∧ (𝐴 𝐵) ∈ C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3431, 33sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) ↔ (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3534biimpd 219 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝐵C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3635ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵C𝑥C ) → ((𝐴 ⊆ (𝐴 𝐵) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3730, 36mpand 710 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵C𝑥C ) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
382, 10, 37syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ⊆ (𝐴 𝐵) → (𝐴 𝑥) ⊆ (𝐴 𝐵)))
3938imp 445 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ (𝐴 𝐵)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4027, 39sylan2 491 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
4140adantrr 752 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) ⊆ (𝐴 𝐵))
42 chjcl 28186 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝑥C ) → (𝐴 𝑥) ∈ C )
431, 10, 42sylancr 694 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ HAtoms → (𝐴 𝑥) ∈ C )
442, 43anim12i 589 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
4544adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐵C ∧ (𝐴 𝑥) ∈ C ))
46 chub1 28336 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥C ) → 𝐴 ⊆ (𝐴 𝑥))
471, 10, 46sylancr 694 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ HAtoms → 𝐴 ⊆ (𝐴 𝑥))
4847ad2antlr 762 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐴 ⊆ (𝐴 𝑥))
49 pm3.22 465 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5049adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
5127adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → 𝑥 ⊆ (𝐴 𝐵))
52 incom 3797 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝑥) = (𝑥𝐴)
53 chsh 28051 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C𝑥S )
541chshii 28054 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴S
55 orthin 28275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥S𝐴S ) → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5653, 54, 55sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑥 ⊆ (⊥‘𝐴) → (𝑥𝐴) = 0))
5756imp 445 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝑥𝐴) = 0)
5852, 57syl5eq 2666 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥C𝑥 ⊆ (⊥‘𝐴)) → (𝐴𝑥) = 0)
5910, 13, 58syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝐴𝑥) = 0)
6051, 59jca 554 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ HAtoms ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
6160ad2ant2lr 783 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0))
62 atexch 29210 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
631, 62mp3an1 1409 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥 ⊆ (𝐴 𝐵) ∧ (𝐴𝑥) = 0) → 𝐵 ⊆ (𝐴 𝑥)))
6450, 61, 63sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝐵 ⊆ (𝐴 𝑥))
65 chlub 28338 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴C𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
661, 65mp3an1 1409 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) ↔ (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6766biimpd 219 . . . . . . . . . . . . . . . . . . 19 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → ((𝐴 ⊆ (𝐴 𝑥) ∧ 𝐵 ⊆ (𝐴 𝑥)) → (𝐴 𝐵) ⊆ (𝐴 𝑥)))
6867expd 452 . . . . . . . . . . . . . . . . . 18 ((𝐵C ∧ (𝐴 𝑥) ∈ C ) → (𝐴 ⊆ (𝐴 𝑥) → (𝐵 ⊆ (𝐴 𝑥) → (𝐴 𝐵) ⊆ (𝐴 𝑥))))
6945, 48, 64, 68syl3c 66 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝐵) ⊆ (𝐴 𝑥))
7041, 69eqssd 3612 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝐴 𝑥) = (𝐴 𝐵))
7170ineq1d 3805 . . . . . . . . . . . . . . 15 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → ((𝐴 𝑥) ∩ (⊥‘𝐴)) = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7224, 71eqtr3d 2656 . . . . . . . . . . . . . 14 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → 𝑥 = ((𝐴 𝐵) ∩ (⊥‘𝐴)))
7372eleq1d 2684 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0)) → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7473exp43 639 . . . . . . . . . . . 12 (𝐵 ∈ HAtoms → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7574com24 95 . . . . . . . . . . 11 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))))
7675imp31 448 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → (𝑥 ∈ HAtoms ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7776ibd 258 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) ∧ 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴))) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
7877ex 450 . . . . . . . 8 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → (𝑥 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
7978com23 86 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (𝑥 ∈ HAtoms → (𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)))
8079rexlimdv 3026 . . . . . 6 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → (∃𝑥 ∈ HAtoms 𝑥 ⊆ ((𝐴 𝐵) ∩ (⊥‘𝐴)) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
819, 80mpd 15 . . . . 5 ((𝐵 ∈ HAtoms ∧ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0) → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms)
8281ex 450 . . . 4 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ≠ 0 → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms))
8382necon1bd 2809 . . 3 (𝐵 ∈ HAtoms → (¬ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
8483orrd 393 . 2 (𝐵 ∈ HAtoms → (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
85 elun 3745 . . 3 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}))
86 fvex 6188 . . . . . 6 (⊥‘𝐴) ∈ V
8786inex2 4791 . . . . 5 ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ V
8887elsn 4183 . . . 4 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0} ↔ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0)
8988orbi2i 541 . . 3 ((((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9085, 89bitri 264 . 2 (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}) ↔ (((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms ∨ ((𝐴 𝐵) ∩ (⊥‘𝐴)) = 0))
9184, 90sylibr 224 1 (𝐵 ∈ HAtoms → ((𝐴 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  wne 2791  wrex 2910  cun 3565  cin 3566  wss 3567  {csn 4168  cfv 5876  (class class class)co 6635   S csh 27755   C cch 27756  cort 27757   chj 27760  0c0h 27762  HAtomscat 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001  ax-hilex 27826  ax-hfvadd 27827  ax-hvcom 27828  ax-hvass 27829  ax-hv0cl 27830  ax-hvaddid 27831  ax-hfvmul 27832  ax-hvmulid 27833  ax-hvmulass 27834  ax-hvdistr1 27835  ax-hvdistr2 27836  ax-hvmul0 27837  ax-hfi 27906  ax-his1 27909  ax-his2 27910  ax-his3 27911  ax-his4 27912  ax-hcompl 28029
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-cn 21012  df-cnp 21013  df-lm 21014  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cfil 23034  df-cau 23035  df-cmet 23036  df-grpo 27317  df-gid 27318  df-ginv 27319  df-gdiv 27320  df-ablo 27369  df-vc 27384  df-nv 27417  df-va 27420  df-ba 27421  df-sm 27422  df-0v 27423  df-vs 27424  df-nmcv 27425  df-ims 27426  df-dip 27526  df-ssp 27547  df-ph 27638  df-cbn 27689  df-hnorm 27795  df-hba 27796  df-hvsub 27798  df-hlim 27799  df-hcau 27800  df-sh 28034  df-ch 28048  df-oc 28079  df-ch0 28080  df-shs 28137  df-span 28138  df-chj 28139  df-chsup 28140  df-pjh 28224  df-cv 29108  df-at 29167
This theorem is referenced by:  atoml2i  29212
  Copyright terms: Public domain W3C validator