Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem1 Structured version   Visualization version   GIF version

Theorem ax5seglem1 25742
 Description: Lemma for ax5seg 25752. Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑇,𝑖,𝑗

Proof of Theorem ax5seglem1
StepHypRef Expression
1 simpl2l 1112 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 fveecn 25716 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
31, 2sylancom 700 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
4 simpl2r 1113 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 fveecn 25716 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
64, 5sylancom 700 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7 0re 10000 . . . . . . . . . 10 0 ∈ ℝ
8 1re 9999 . . . . . . . . . 10 1 ∈ ℝ
97, 8elicc2i 12197 . . . . . . . . 9 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
109simp1bi 1074 . . . . . . . 8 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
1110adantr 481 . . . . . . 7 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → 𝑇 ∈ ℝ)
12113ad2ant3 1082 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℝ)
1312recnd 10028 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → 𝑇 ∈ ℂ)
1413adantr 481 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → 𝑇 ∈ ℂ)
15 fveq2 6158 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵𝑖) = (𝐵𝑗))
16 fveq2 6158 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
1716oveq2d 6631 . . . . . . . . 9 (𝑖 = 𝑗 → ((1 − 𝑇) · (𝐴𝑖)) = ((1 − 𝑇) · (𝐴𝑗)))
18 fveq2 6158 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
1918oveq2d 6631 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑇 · (𝐶𝑖)) = (𝑇 · (𝐶𝑗)))
2017, 19oveq12d 6633 . . . . . . . 8 (𝑖 = 𝑗 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2115, 20eqeq12d 2636 . . . . . . 7 (𝑖 = 𝑗 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2221rspccva 3298 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
2322adantll 749 . . . . 5 (((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
24233ad2antl3 1223 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))
25 oveq2 6623 . . . . . 6 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → ((𝐴𝑗) − (𝐵𝑗)) = ((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
2625oveq1d 6630 . . . . 5 ((𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))) → (((𝐴𝑗) − (𝐵𝑗))↑2) = (((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))↑2))
27 subdi 10423 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝑇 · ((𝐴𝑗) − (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
28273coml 1269 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · ((𝐴𝑗) − (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
29 ax-1cn 9954 . . . . . . . . . . . . . 14 1 ∈ ℂ
30 subcl 10240 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
3129, 30mpan 705 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (1 − 𝑇) ∈ ℂ)
3231adantl 482 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − 𝑇) ∈ ℂ)
33 simpl 473 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
34 subdir 10424 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))))
3529, 34mp3an1 1408 . . . . . . . . . . . 12 (((1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))))
3632, 33, 35syl2anc 692 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))))
37 nncan 10270 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
3829, 37mpan 705 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (1 − (1 − 𝑇)) = 𝑇)
3938oveq1d 6630 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = (𝑇 · (𝐴𝑗)))
4039adantl 482 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − (1 − 𝑇)) · (𝐴𝑗)) = (𝑇 · (𝐴𝑗)))
41 mulid2 9998 . . . . . . . . . . . . 13 ((𝐴𝑗) ∈ ℂ → (1 · (𝐴𝑗)) = (𝐴𝑗))
4241oveq1d 6630 . . . . . . . . . . . 12 ((𝐴𝑗) ∈ ℂ → ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))) = ((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))))
4342adantr 481 . . . . . . . . . . 11 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 · (𝐴𝑗)) − ((1 − 𝑇) · (𝐴𝑗))) = ((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))))
4436, 40, 433eqtr3rd 2664 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) = (𝑇 · (𝐴𝑗)))
4544oveq1d 6630 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) − (𝑇 · (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
46453adant2 1078 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) − (𝑇 · (𝐶𝑗))) = ((𝑇 · (𝐴𝑗)) − (𝑇 · (𝐶𝑗))))
47 simp1 1059 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
48 mulcl 9980 . . . . . . . . . . . 12 (((1 − 𝑇) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
4931, 48sylan 488 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
5049ancoms 469 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
51503adant2 1078 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((1 − 𝑇) · (𝐴𝑗)) ∈ ℂ)
52 mulcl 9980 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
5352ancoms 469 . . . . . . . . . 10 (((𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
54533adant1 1077 . . . . . . . . 9 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (𝑇 · (𝐶𝑗)) ∈ ℂ)
5547, 51, 54subsub4d 10383 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − ((1 − 𝑇) · (𝐴𝑗))) − (𝑇 · (𝐶𝑗))) = ((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))))
5628, 46, 553eqtr2rd 2662 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) = (𝑇 · ((𝐴𝑗) − (𝐶𝑗))))
5756oveq1d 6630 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))↑2) = ((𝑇 · ((𝐴𝑗) − (𝐶𝑗)))↑2))
58 simp3 1061 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → 𝑇 ∈ ℂ)
59 subcl 10240 . . . . . . . 8 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
60593adant3 1079 . . . . . . 7 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
6158, 60sqmuld 12976 . . . . . 6 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝑇 · ((𝐴𝑗) − (𝐶𝑗)))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
6257, 61eqtrd 2655 . . . . 5 (((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) → (((𝐴𝑗) − (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗))))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
6326, 62sylan9eqr 2677 . . . 4 ((((𝐴𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐵𝑗) = (((1 − 𝑇) · (𝐴𝑗)) + (𝑇 · (𝐶𝑗)))) → (((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
643, 6, 14, 24, 63syl31anc 1326 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
6564sumeq2dv 14383 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
66 fzfid 12728 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (1...𝑁) ∈ Fin)
6710resqcld 12991 . . . . . 6 (𝑇 ∈ (0[,]1) → (𝑇↑2) ∈ ℝ)
6867recnd 10028 . . . . 5 (𝑇 ∈ (0[,]1) → (𝑇↑2) ∈ ℂ)
6968adantr 481 . . . 4 ((𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝑇↑2) ∈ ℂ)
70693ad2ant3 1082 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → (𝑇↑2) ∈ ℂ)
7123adant1 1077 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
72713adant2r 1318 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
7353adant1 1077 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
74733adant2l 1317 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
7572, 74, 59syl2anc 692 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐴𝑗) − (𝐶𝑗)) ∈ ℂ)
7675sqcld 12962 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
77763expa 1262 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
78773adantl3 1217 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴𝑗) − (𝐶𝑗))↑2) ∈ ℂ)
7966, 70, 78fsummulc2 14463 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)) = Σ𝑗 ∈ (1...𝑁)((𝑇↑2) · (((𝐴𝑗) − (𝐶𝑗))↑2)))
8065, 79eqtr4d 2658 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐵𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴𝑗) − (𝐶𝑗))↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2908   class class class wbr 4623  ‘cfv 5857  (class class class)co 6615  ℂcc 9894  ℝcr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   ≤ cle 10035   − cmin 10226  ℕcn 10980  2c2 11030  [,]cicc 12136  ...cfz 12284  ↑cexp 12816  Σcsu 14366  𝔼cee 25702 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-icc 12140  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-ee 25705 This theorem is referenced by:  ax5seglem3  25745  ax5seglem6  25748
 Copyright terms: Public domain W3C validator